$H. E. Muxanë 6^{-1}, C. П. Кругло 6^{-1}, C. В. Ковыршин 1$

¹ Иркутский государственный университет путей сообщения, г. Иркутск, Российская Федерация

МЕХАТРОННЫЙ МАКЕТ СИСТЕМЫ ПРИЦЕЛЬНОГО ТОРМОЖЕНИЯ ТРАНСПОРТНОГО СРЕДСТВА

Аннотация. Мехатронный макет системы прицельного торможения транспортного средства представляет собой комплексное устройство, объединяющее в себе механические, электронные и программные компоненты. Этот макет используется для исследования и тестирования различных алгоритмов и стратегий торможения, а также для оценки и оптимизации работы системы при различных условиях эксплуатации. Макет включает в себя следующие основные компоненты: датчики скорости и ускорения, пройденного пути, тормозной соленоид, средства индикации, микроконтроллер для реализации алгоритма прицельного торможения. Рассмотрена система прицельного торможения на основе адаптивного алгоритма для определения момента и силы торможения с целью реализации остановки транспортного средства в назначенной точки независимо от параметров транспортного средства, состояния его тормозной системы, свойств транспортного полотна и действия внешних возмущений. Использование данной системы прицельного торможения на железнодорожном транспорте позволит повысить безопасность движения поездов, снизить риск аварий, увеличить точность торможения, например, при реализации остановки электричек на необорудованных станциях, на тупиковых путях и др.

Ключевые слова: мехатронный макет, система прицельного торможения, алгоритм управления, адаптивная система управления.

N. E. Mikhalev¹, S. P. Kruglov¹, S. V. Kovyrshin¹

Irkutsk State Transport University, Irkutsk, Russian Federation

A MECHATRONIC MOCK-UP OF THE VEHICLE 'S TARGETED BRAKING SYSTEM

Annotation. The mechatronic mock-up of the vehicle's aiming braking system is a complex device that combines mechanical, electronic and software components. This mock-up is used to research and test various braking algorithms and strategies, as well as to evaluate and optimize the system's performance under various operating conditions. The model of the aiming braking system includes the following main components: sensors for speed and acceleration, distance traveled, a brake solenoid, indication devices, and a microcontroller for implementing the aiming braking algorithm. The targeted braking system uses an adaptive algorithm to determine the moment and force of braking to bring the vehicle to a stop at a designated point, regardless of the vehicle's parameters, the state of its braking system, the properties of the roadbed and the effects of external disturbances. The use of this targeted braking system in railway transport will improve train safety, reduce the risk of accidents, and increase braking accuracy, for example, when stopping electric trains at unequipped stations, dead-end tracks, etc.

Keywords: mechatronic mock-up, aiming braking system, control algorithm, adaptive control system.

Введение

Железнодорожный транспорт является важной составляющей транспортной инфраструктуры страны. Вопросы автоматизации разных режимов движения железнодорожных составов является определяющей задачей повышения эффективности использования этого вида транспорта, безопасности движения. Это, в том числе, касается и работы системы торможения. Выполнить автоматизацию этого процесса достаточно сложно из-за множества факторов, действующих на него: состояние тормозной системы, уклон пути, состояние рельс и колесных пар, погодные условия и пр. Поэтому до сих пор процессы целевого торможения, предполагающего остановку в заданной точке пути с достаточно жесткими требованиями к точности, выполняются машинистами в режиме ручного управления.

Реализованный режим автоматического торможения, применяющийся в современных локомотивах в аварийных режимах, реализуемый системой автоматического управления

торможением обеспечивает точность +30 ... -100 м. Для пассажирских поездов и электропоездов с задачей остановки около платформы такая точность не удовлетворяет. Требуется точность не хуже нескольких метров.

Ручное управление торможением с рядом факторов:

- требование высокого мастерства машиниста, опыта;
- риск ошибки при усталости машиниста или неопытности;
- сложные или нештатные ситуации и пр.

Современные условия динамичного экономического роста страны открывают качественно новые возможности для инновационного развития железнодорожной отрасли и связанной с ней инфраструктуры, увеличения объемов перевозок, повышения надежности и качества всей системы. Однако такое развитие невозможно без обеспечения безопасности движения поездов на высоком уровне.

Таким образом, задача повышения безопасности дорожного движения является приоритетной на железнодорожном транспорте. Вследствие этого автоматизация ответственных процессов управления поездом, в частности прицельного торможения, позволит повысить безопасность движения поездов, в том числе на тупиковых путях пассажирских станций.

Целью работы является описание работ по созданию мехатронного макета системы прицельного торможения транспортного средства, способной обеспечивать точное торможение транспортного средства в условиях многообразия реальных факторов в текущем времени.

Адоптивный алгоритм управления торможением

Исходя из изложенного выше, предлагается строить автоматическую систему прицельного торможения на основе адаптивного алгоритма управления, построенного на основе «упрощенных» условий адаптируемости [1]. Он построен на использовании алгоритма текущей параметрической идентификации математической модели объекта управления и назначаемой неявной эталонной модели. Последняя формализует требования к результирующей системе управления.

Математическая модель транспортного средства в задаче прицельного торможения может быть описана на основании рис. 1.

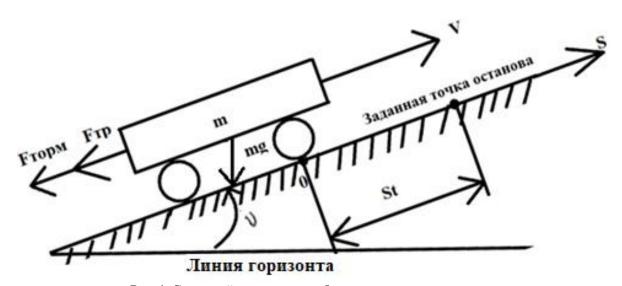


Рис. 1. Силы, действующие на объект управления при уклоне

На рисунке выполнены следующие обозначения: V — скорость движения транспортного средства; m — масса; S — пройденный путь от начала торможения; St — заданный тормозной

путь; g — ускорение свободного падения; υ — угол наклона пути; $F_{\rm TP} = k_{\rm TP} * V$ — сила трения; $k_{\rm TP}$ — коэффициент трения; $F_{\rm TOPM}$ — сила торможения.

Уравнение динамики объекта описывается зависимостью, построенной на основе второго закона Ньютона:

$$\dot{V} = -\frac{k_{\text{TP}}}{m}V - \frac{k_{\text{TOPM}}}{m}\gamma - \frac{mg\sin\upsilon}{m} = a_1V + a_2 + b\gamma, \tag{1}$$

где $a_1=-\frac{k_{\mathrm{TP}}}{m}$, $a_2=-\frac{mg\sin\upsilon}{m}$, $b=-\frac{k_{\mathrm{TOPM}}}{m}$ — параметры модели (1); γ — коэффициент заполнения широтно-импульсной модуляции в системе управления электромагнитным тормозом.

Эталонную модель процесса торможения задаём по следующей формуле:

$$\dot{V}_{_{\rm M}} = -T_{_{\rm M}}^{-1} (V_{_{\rm M}} - V_{_{\rm 3d,I}}), \tag{2}$$

где $V_{\rm M}$ – скорость эталонная (соответствует V), м/с²;

 $V_{\text{зад}}$ – заданная скорость м/с²;

 $T_{_{\rm M}}$ – поставленная времени, приближенная к эталону.

Будем использовать режим торможения, когда $\dot{V}_{\text{торм}} = \text{const.}$ Ему соответствует зависимость:

$$V_{\text{\tiny 3AJ}}(s) = V_0 \sqrt{\frac{St - S}{St}} \,, \tag{3}$$

где V_0 — начальная скорость, м/с.

Приравняв правые части уравнения (1) и уравнения (2), и заменим $V_{_{\rm M}}$ на V получим систему уравнений:

$$\begin{cases} a_{1}V + a_{2} + b\gamma = -T_{M}^{-1} (V - V_{3AJ}(s)); \\ b\gamma = -(a_{1} + T_{M}^{-1})V + T_{M}^{-1}V_{3AJ}(s) - a_{2}, \end{cases}$$
(4)

Отсюда точный закон управления на основе точной информации о параметрах объекта управления рассчитывается по формуле:

$$\gamma = b^{-1} \left[-\left(a_1 + T_{M}^{-1} \right) V + T_{M}^{-1} V_{3a,\chi}(s) - a_2 \right], \tag{5}$$

где (a_1, a_2, b) — будем оценивать с использованием алгоритма текущей идентификации; $a_1 a_2 \hat{b}$ — оценки a_1, a_2, b .

Реальный закон управления на основе (5) определяется как

$$\gamma_{i} = b_{i}^{-1} \left[-\left(a_{1i} + T_{M}^{-1}\right) V_{i} - T_{M}^{-1} V_{3a,I}(s) - a_{2i} \right].$$
(6)

В качестве алгоритма текущей идентификации используется алгоритм Качмажа [2]:

$$\hat{\boldsymbol{\theta}}_{i} = \hat{\boldsymbol{\theta}}_{i-1} + \frac{\eta y_{i}}{\alpha + y_{i}^{\mathrm{T}} y_{l}} \left(\dot{V}_{i} - \hat{\boldsymbol{\theta}}^{\mathrm{T}}_{i-1} y_{i} \right)$$

$$(7)$$

где $\theta=(a_1,\ a_2,\ b)^{\rm T}$ — вектор искомых параметров; «крышка» означает оценку соответствующего параметра; i — дискретные моменты времени с шагом $h;\ y=\begin{bmatrix}V,1,\gamma\end{bmatrix}^{\rm T}$ — вектор регрессоров; η — эта = (0.1...1) — коэффициент усиления алгоритма; α — малое число для защиты от деления на нуль; верхний индекс «Т» обозначает транспонирование.

Описание макета

Блок-схема управляющей программы (рис. 2).

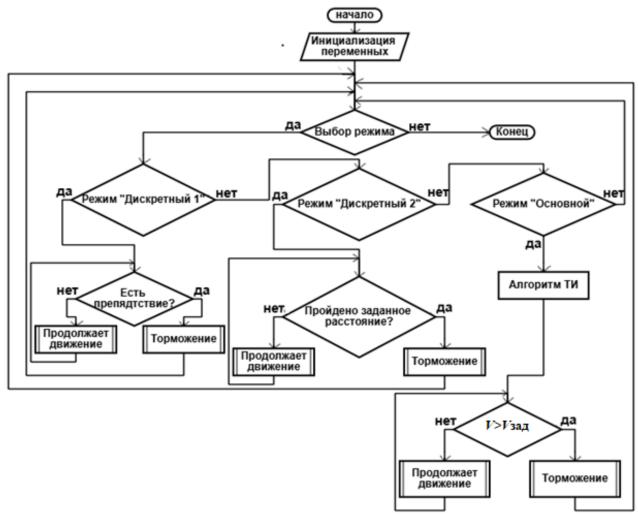


Рис. 2. Блок-схема управляющей программы

Блок-схема включает инициализацию переменных — присвоение начального значения переменных. Выбор режима — автоматический выбор из трёх режимов работы таких как:

- «Дискретное управление датчиком препятствий 1»: если есть препятствие срабатывает катушка соленоид; если нет препятствия устройство продолжает движение;
- «Дискретное управления расстоянием 2»: если прошел срабатывает катушка соленоид, если нет устройство продолжает движение;
- «Основной алгоритм торможения»: функционирует алгоритм текущей идентификации (АТИ) это метод, который позволяет получать оценки параметров объекта в процессе его работы; заданная скорость ($V_{3ад}$) скорость, требуемая техническим условиям; (V_{3ad}) скорость движения транспортного средства; запоминающее устройство (V_{3ad}) это совокупность технических средств, предназначенных для приёма, хранения и считывания информации, представленной двоичными кодами.

Конструкция и эскиз макета (рис. 3, 4).

Макет тележки состоит из нескольких частей, распечатанных на 3D принтере (см. рис.

3).
a)

Рис. 3. Детали макета: а) деталь колеса; б) деталь вала колёсной пары; в) деталь кузова; г) деталь надрессорной балки; д) деталь боковины.

Эскиз макета представлен на рис. 4.

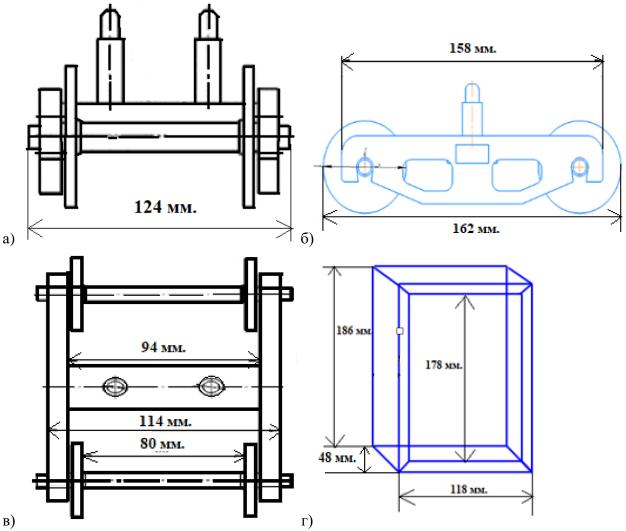


Рис. 4. Эскиз макета, где: а) вид спереди; б) вид сбоку; в) вид сверху; г) вид кузова сверху.

Параметры составных частей

Для реализации макета были выбраны микроконтроллер [3], (рис. 5) и датчики [4].

Рис. 5. Микроконтроллер Ардуино Уно

Датчики и их характеристики

Инфракрасный датчик препятствия (рис. 6), [5]. Его технические характеристики:

- модель: YL-63(или FC-51);
- напряжение питания: 3.3-5 B;
- расстояние обнаружения препятствий: 2 30 см;
- эффективный угол обнаружения препятствий: 35°;
- потенциометр для изменения чувствительности;
- светодиод индикации питания;
- светодиод индикации срабатывания.

Рис. 6. Датчик движения

Технические характеристики энкодера (рис. 7), [6]:

- тип энкодера: инкрементный оптический поворотный энкодер АВ двухфазный;
- количество импульсов: 600;
- напряжение питания: 5-24В;
- рабочая температура: -10°C до +70 °C;
- материал корпуса: алюминий;
- максимальная частота вращения: 6000 об/мин;
- пропускная способность: 300 кГц.

Рис. 7. Энкодер

Акселерометр (рис. 8). Его технические характеристики:

– питание:3.3- 5В

- ток потребления: 500 мкА;
- режимы для акселерометра: $\pm 2g$, $\pm 4g$, $\pm 6g$, $\pm 8g$, $\pm 16g$;
- режимы для гироскопа: $\pm 250^{\circ}$, $\pm 500^{\circ}$, $\pm 1000^{\circ}$, $\pm 2000^{\circ}$;
- интерфейс I2C: 16 бит.

С помощью представленного датчика можно создавать проекты, связанные с управлением роботов, систем управления полетом. Измеряет ускорение и угол наклона [7].

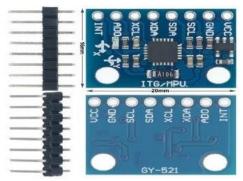


Рис. 8. Акселерометр

Электромагнитная катушка соленоид (рис. 9). Технические характеристики:

- номинальное напряжение: 24В;
- максимальный ток: 0,6 А;
- сила притяжения: 196 H (20кгс);
- высота катушки: 38 мм;
- длина хода: 8 мм;
- время открытия/закрытия: 10мс.

Рис. 9. Тормозной соленоид в виде электромагнита

Проведен первый этап исследования разработанной системы прицельного торможения. Для этого использовались наклоны поверхности от 20 до 40 градусов, грузы от 100 до 500 грамм, заданное расстояние торможение при разных условиях составляет 1 м. Система показывает точность торможения не хуже 3-5 см.

Заключение

Данная работа посвящена решению актуальной проблемы создания адаптивной системы прицельного торможения транспортного средства. Предлагается ее строить на основе адаптивного алгоритма на основе «упрощенных» условий адаптируемости с алгоритмом текущей параметрической идентификации и неявной эталонной модели [8-10]. Обоснована структура макета автоматической системы прицельного торможения, разработано

программного обеспечения управляющего контроллера, изготовлен макет с использованием микроконтроллеров и датчиков [11-13]. Макет, получившийся в результате выполнения работы представлен на рис. 10-12. Кроме того, изучены возможности специального программного обеспечения для решения вспомогательных задач. Дальнейшими задачами является детальные исследование эффективности разработанной системы прицельного торможения. Разработанный алгоритм и его модификации могут быть доработаны и использованы в различных транспортных средствах, включая железнодорожный транспорт, с учетом современных подходов к адаптивному управлению [14].

Рис. 10. Вид сверху

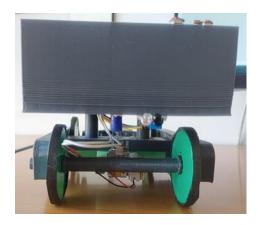


Рис. 10. Вид спереди

Рис. 10. Вид сзади

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Круглов С.П. Адаптивное управление неминимально-фазовым скалярным объектом второго порядка с обеспечением заданных характеристик переходного процесса// Научный вестник НГТУ. Т.65. №4. 2016. С. 33-53.
- 2. Алгоритм Качмажа [Электронный ресурс] // Algowiki. URL: https://algowiki-project.org/ru/Алгоритм_Качмажа#:~:text=Алгоритм (дата обращения: 05.09.2024).
- 3. Робототехнические комплектующие [Электронный ресурс] // Robot-Kit.ru. URL: https://robot-kit.ru/3352/ (дата обращения: 05.09.2024).
- 4. Сайт компании «Промэлектроника» [Электронный ресурс]. URL: http://www.promelec.ru/ (дата обращения: 05.09.2024).
- 5. Инфракрасный датчик препятствий YL-63 [Электронный ресурс] // Блог 3DIY Shop. URL: https://3d-diy.ru/blog/infrakrasnyj-datchik-prepyatstvij-yl-63/ (дата обращения: 05.09.2024).
- 6. Энкодер [Электронный ресурс] // Avrobot. URL: https://avrobot.ru/product_info.php?products_id=7463 (дата обращения: 05.09.2024).
- 7. Обзор модуля GY-521 [Электронный ресурс] // Robotchip. URL: https://robotchip.ru/obzor-modulya-gy-521/ (дата обращения: 05.09.2024).
- 8. Астахов Ю.В., Мирошник И.В. Адаптивные системы управления: учебное пособие. М.: Изд-во МГТУ им. Н.Э. Баумана, 2018. 320 с.
- 9. Мехатроника: учебник для вузов / под ред. В.Г. Грачева. СПб.: Политехника, 2020. 456 с.
- 10. Иванов А.А., Петров С.И. Современные алгоритмы адаптивного управления транспортными системами // Автоматика и телемеханика. 2021. № 5. С. 45–60.
- 11. Сидоров Д.В., Кузнецов П.А. Применение микроконтроллеров в системах автоматического торможения // Датчики и системы. 2022. № 3. С. 28–35.
- 12. Официальный сайт Arduino: документация и примеры проектов [Электронный ресурс]. URL: https://www.arduino.cc (дата обращения: 05.09.2024).
- 13. Обзор современных датчиков для мехатронных систем [Электронный ресурс] // RoboTrends. 2023. URL: https://robottrends.ru/sensors-review (дата обращения: 05.09.2024).
- 14. Исследование алгоритмов адаптивного управления в реальном времени [Электронный ресурс] // CyberPhys Systems Journal. 2022. URL: https://cps-journal.org/adaptive-control (дата обращения: 05.09.2024).

REFERENCES

- 1. Kruglov S.P. Adaptive control of a nonminimal phase scalar object of the second order with the provision of specified characteristics of the transition process// Scientific Bulletin of NSTU. Vol.65. No. 4. 2016. pp. 33-53.
- 2. Kachmazh algorithm [Electronic resource] // Algowiki. URL: https://algowiki-project.org/ru/Алгоритм_Kachmazha#:~:text=Algorithm (date of access: 09.05.2024).
- 3. Robotic components [Electronic resource] // Robot-Kit.ru . URL: https://robot-kit.ru/3352 / (date of access: 05.09.2024).
- 4. The website of the Promelectronics company [Electronic resource]. URL: http://www.promelec.ru / (date of access: 09/05/2024).
- 5. Infrared obstacle sensor YL-63 [Electronic resource] // Blog 3DIY Shop. URL: https://3d-diy.ru/blog/infrakrasnyj-datchik-prepyatstvij-yl-63 / (date of access: 09.05.2024).
- 6. Encoder [Electronic resource] // Avrobot. URL: https://avrobot.ru/product_info.php?products_id=7463 (date of access: 09.05.2024).
- 7. Overview of the GY-521 module [Electronic resource] // Robotchip. URL: https://robotchip.ru/obzor-modulya-gy-521 / (date of access: 09.05.2024).
- 8. Astakhov Yu.V., Miroshnik I.V. Adaptive control systems: a textbook. Moscow: Publishing House of Bauman Moscow State Technical University, 2018. 320 p.
- 9. Mechatronics: a textbook for universities / edited by V.G. Grachev. St. Petersburg: Polytechnic, 2020. 456 p.

- 10. Ivanov A.A., Petrov S.I. Modern algorithms of adaptive control of transport systems // Automation and telemechanics. 2021. No. 5. pp. 45-60.
- 11. Sidorov D.V., Kuznetsov P.A. Application of microcontrollers in automatic braking systems // Sensors and systems. 2022. No. 3. pp. 28-35.
- 12. Official Arduino website: documentation and project examples [Electronic resource]. URL: https://www.arduino.cc (date of access: 09.05.2024).
- 13. Review of modern sensors for mechatronic systems [Electronic resource] // RoboTrends. 2023. URL: https://robottrends.ru/sensors-review (date of access: 09.05.2024).
- 14. Research of adaptive control algorithms in real time [Electronic resource] // CyberPhys Systems Journal. 2022. URL: https://cps-journal.org/adaptive-control (date of access: 09.05.2024).

Информация об авторах

Михалёв Никита Евгеньевич - студент группы Приборостроение магистратура, кафедры «Физика, механика и приборостроение», Иркутский государственный университет путей сообщения, г. Иркутск, e-mail: nikitka_mikhalev@list.ru

Круглов Сергей Петрович - д. т. н., профессор, профессор кафедры «Автоматизация производственных процессов», Иркутский государственный университет путей сообщения, г. Иркутск, e-mail: kruglov_sp@irgups.ru

Ковыршин Сергей Владимирович - к. т. н., доцент кафедры «Автоматизация производственных процессов», Иркутский государственный университет путей сообщения, г. Иркутск, e-mail: kovyrshin_sv@irgups.ru

Information about the authors

Mikhalev Nikita Evgenievich - student of the Instrument Engineering group, Master's degree program, Department of "Physics, Mechanics and Instrument Engineering", Irkutsk State University of Railway Engineering, Irkutsk, e-mail: nikitka_mikhalev@list.ru

Kruglov Sergey Petrovich, - Doctor of Engineering Sciences, Professor, Professor of the Department of "Automation of Production Processes", Irkutsk State University of Railway Engineering, Irkutsk, e-mail: kruglov_sp@irgups.ru

Kovyrshin Sergey Vladimirovich, - Candidate of Engineering Sciences, Associate Professor of the Department of "Automation of Production Processes", Irkutsk State University of Railway Engineering, Irkutsk, e-mail: kovyrshin_sv@irgups.ru