Я.А. Савицкая, Е.Ф. Мороз

Красноярский институт железнодорожного транспорта— филиал Федерального государственного бюджетного образовательного учреждения высшего образования «Иркутский государственный университет путей сообщения», г. Красноярск, Российская Федерация

ИССЛЕДОВАНИЕ СИСТЕМЫ ДИСТАНЦИОННОЙ ТЕХНИЧЕСКОЙ ДИАГНОСТИКИ ДЛЯ УСТРОЙСТВ СИГНАЛИЗАЦИИ, ЦЕНТРАЛИЗАЦИИ И БЛОКИРОВКИ

Аннотация. В статье рассматриваются системы технической диагностики и мониторинга устройств сигнализации, централизации и блокировки (СЦБ), которые играют ключевую роль в обеспечении безопасности на железных дорогах, действуя в соответствии с законодательством о государственных предприятиях с акцентом на Кошурниковскую дистанцию. Указывается, что текущие методы не всегда обеспечивают быструю идентификацию и устранение неисправностей, что может привести к авариям. Анализируется потенциал современных цифровых технологий, таких как интернет вещей (ІоТ), искусственный интеллект, машинное обучение, облачные технологии и мобильные приложения, в контексте создания систем технической диагностики. Подчеркивается, что их внедрение может повысить эффективность и безопасность работы дистанции СЦБ, оптимизировать производственные процессы и снизить затраты на обслуживание оборудования. Результаты проведенных исследований подтверждают, что применение цифровых технологий в системах технической диагностики может улучшить управление оборудованием и обеспечить надежную работу железнодорожных путей.

Ключевые слова: Дистанция, диагностика, техническая эксплуатация, отказ, мониторинг, железнодорожные пути, надёжность.

Ya.A. Savitskaya, E.F. Moros

Krasnoyarsk Institute of Railway Transport is a branch of the Federal State Budgetary Educational Institution of Higher Education "Irkutsk State University of Railways", Krasnoyarsk, Russian Federation

STUDY OF A REMOTE TECHNICAL DIAGNOSTICS SYSTEM FOR ALARM, CENTRALIZATION AND BLOCKING DEVICES

Abstract. The article examines the systems of technical diagnostics and monitoring of signaling, centralization and blocking, which play a key role in ensuring safety on railways, acting in accordance with the legislation on state-owned enterprises with an emphasis on the Koshurnikovskaya railway station. It is pointed out that current methods do not always provide quick identification and troubleshooting, which can lead to accidents. The potential of modern digital technologies such as the Internet of Things (IoT), artificial intelligence, machine learning, cloud technologies and mobile applications is analyzed in the context of creating technical diagnostic systems. It is emphasized that their implementation can increase the efficiency and safety of the SCB distance, optimize production processes and reduce equipment maintenance costs. The results of the conducted research confirm that the use of digital technologies in technical diagnostics systems can improve

Keywords: Distance, diagnostics, technical operation, failure, monitoring, railway tracks, reliability.

Введение

Современные системы технической диагностики строятся на основе цифровых технологий, которые позволяют в реальном времени собирать и анализировать данные о состоянии оборудования. К таким технологиям относятся, искусственный интеллект, машинное обучение, облачные технологии и мобильные приложения. Внедрение этих цифровых решений в системы технической диагностики создает единую цифровую экосистему, обеспечивающую комплексный подход к мониторингу и управлению оборудованием на дистанции СЦБ. Это особенно актуально для автоматических устройств, которые играют важную роль в обеспечении безопасности движения поездов. Для повышения надежности и качества технического обслуживания таких устройств в дистанции сигнализации, централизации и блокировки (СЦБ) разработаны специальные системы учета и систематизации отказов и неисправностей. Учет ведется не только по отказам, но и по

неисправностям, выявленным во время плановых ревизий. Это обеспечивает оперативное реагирование на возникающие неисправности и потенциальные опасности, что позволяет предотвращать аварии и обеспечивать бесперебойное и безопасное движение поездов [1-4].

Важнейшим условием повышения надежности системы является разработка программы планово-предупредительных работ, направленных на повышение надежности. Операции технологического процесса составляют основную работу электромехаников. Однако устройства подвергаются воздействию различных помех, требующих специальных мер защиты. По этому в дополнение к основной программе разрабатывается перспективный план, направленный на повышение надежности как всей дистанции, так и отдельных её участков. Поскольку реализация всех мероприятий этого плана в течение одного года не представляется возможной, из него отбираются наиболее приоритетные задачи, которые включаются в годовой план повышения надежности. Этот годовой план служит основой для выполнения работ, предусмотренных второй программой [5].

Таким образом, электромеханики выполняют работы, которые можно разделить на две группы:

- регламентные по графикам технологического процесса;
- дополнительные по годовым планам повышения надежности.

Исследование системы дистанционной технической диагностики для сигнализации, централизации и блокировки

Выполнение работ по техническому обслуживанию и ремонту устройств сигнализации, централизации и блокировки производится по планам-графикам с периодичностью, установленным Распоряжением № 3168р от 30 декабря 2015 г. - Об утверждении Инструкции по техническому обслуживанию и ремонту устройств и систем сигнализации, централизации и блокировки. В связи с тем, что устройства автоматики напрямую влияют на безопасность движения поездов, была разработана особая система, предназначенная для обеспечения их надежности и контроля качества выполняемых работ по техническому обслуживаю.

В дистанции сигнализации, централизации и блокировки ведется учет как отказов, так и дефектов, обнаруженных в ходе проверок оборудования. Разработаны методы для отслеживания и систематизации отказов и неисправностей.

Под технической диагностикой понимается область знаний, охватывающая теорию, методы и средства определения технического состояния объекта — такого состояния, которое характеризуется в определенный момент времени, при определенных условиях внешней среды значениями параметров, установленных технической документацией на объект [5,6].

Процесс определения технического состояния объекта называется техническим диагностированием.

Основными задачами технического диагностирования являются [5]:

- контроль технического состояния объекта (системы);
- поиск места и определение причин отказа (неисправности);
- прогнозирование технического состояния объекта (системы).

Благодаря технической диагностике стало возможным создание систем мониторинга, позволяющих постоянно и удаленно контролировать состояние устройств.

В современной инфраструктуре российских железных дорог устройства непрерывного съема данных, сеть передачи, каналообразующие устройства, а также технический персонал по обработке диагностической информации в совокупности представляют систему технического диагностирования и мониторинга (СТДМ) устройств ЖАТ [7,8].

Современные СТДМ ЖАТ ограничены в возможностях анализа диагностической информации и требуют частичного вмешательства человека с целью обработки данных [7,9].

Наличие своей элементной базы у систем технической диагностики и мониторинга является причиной проведения определенных работ по техническому обслуживанию этих объектов. В Инструкции по обслуживанию устройств сигнализации, централизации и блокировки присутствуют новые виды работ по техническому обслуживанию устройств

СТДМ, направленные на поддержание их работоспособности (чистка устройств, проверка правильности их функционирования и пр.).

Постоянные изменения в программном и аппаратном обеспечении СТДМ привели к потребности создания особых сервисных центров для обеспечения стабильной и качественной работы системы. Сервисные центры организуются разработчиками СТДМ и призваны решать проблемы, связанные с наращиванием и совершенствованием ПО (внедрение новых объектов контроля, корректировка существующего ПО, добавление новых функций по логической обработке диагностических данных и пр.) [10]. Специалисты сервисных центров занимаются устранением ошибок в программном обеспечении, анализируют возникающие диагностические ситуации и оказывают поддержку технологам центрального мониторинга и дистанций сигнализации, централизации и блокировки (СЦБ).

На рис 1. показано, что система СТДМ ЖАТ относится к системе рабочего диагностирования. Она функционирует во время работы объекта и позволяет отслеживать его состояние без вмешательства в процесс средств диагностики со стороны человека. Человек в этом процессе, только анализирует информацию, но не управляет средствами диагностики [11]. При этом технолог может направлять действия обслуживающего персонала и сообщать результат диагноза с целью правильной организации работ по скорейшему восстановлению рабочих характеристик контролируемого объекта.

Рис. 1 Состав работы СТДМ ЖАТ

Такая организация работы СТДМ ЖАТ исключает влияние возможных ошибочных действий технолога на объекты управления и позволяет выполнять функции диагностики [9].

Технические устройства в процессе эксплуатации подвержены различным видам отказов. Наиболее распространенными являются внезапные, перемежающиеся и постепенные отказы. Это показано на рис.5.

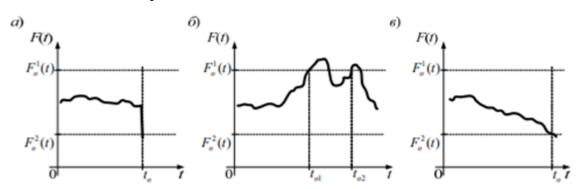


Рис. 2 Отказы технических устройств: а – внезапный; б – перемежающийся; в – постепенный

Внезапный отказ характеризуется скачкообразным изменением значений одного или нескольких параметров объекта. Отказ, как на рисунке 2, а, происходит совершенно случайно и в любой момент времени. Например, это может быть перегоревшая лампочка или сломанный полупроводник. Перемежающийся отказ — это многократно возникающий самоустраняющийся отказ одного и того же характера на рисунке 2, б. Примером перемежающегося отказа является кратковременная ложная занятость рельсовой цепи при нарушении контакта в приварных и обводных соединителях [10]. Перемежающиеся отказы, характерные для микроэлектронных устройств, самовосстанавливаются и не требуют

вмешательства оператора, в отличие от обычных сбоев. Причиной их возникновения являются внешние воздействия, такие как колебания температуры или нестабильность питающего напряжения, влияющие на параметры внутренних компонентов. Постепенный отказ развивается медленно, из-за постепенного изменения значений одного или нескольких параметров объекта, как показано на рисунке 2, б. Этот тип отказа часто является следствием естественного износа оборудования. Примерами являются отказы контактов реле в результате их окисления в процессе продолжительной работы [12].

Поскольку постепенные отказы происходят в результате непрерывного ухудшения рабочих параметров технических объектов, их можно предвидеть. В связи с этим, среди рабочих состояний технического объекта выделяется критическое работоспособное состояние, предшествующее неизбежному выходу из строя [13]. Технический персонал может заранее спланировать ремонт объекта если будет отслеживать его состояние, что позволит восстановить функциональность его до того, как он полностью выйдет из строя.

Выделение критического работоспособного состояния у объектов дает техническому персоналу возможность заранее спланировать ремонт и восстановить функциональность объекта. Переход технического объекта в такое состояние принято называть предотказом, а само состояние – предотказным состоянием [5,12-14].

Предотказное состояние — такое работоспособное состояние объекта, когда хотя бы один из параметров, характеризующих его способность выполнять заданные функции, достигает граничного значения, определенного НТКД, при котором не может быть гарантирована работоспособность объекта при дальнейшем изменении данного параметра [15-17].

На рисунке 3 представлено графическое изображение, поясняющее, что такое предотказное состояние технического объекта. Функция F(t) является некоторой рабочей характеристикой технического объекта. При изменении F(t) во времени рано или поздно значения параметров ухудшаются, приближаясь к границам работоспособного состояния. В момент времени 1 t фиксируется предотказное состояние объекта. Объект тем самым переходит в область своих работоспособных предотказных состояний и при дальнейшем сохранении тенденций ухудшения характеристик в момент времени 2t отказывает. [11] Наличие граничных зон предотказных состояний F^1 п(t) и F^2 п(t) позволяет при наличии средств контроля зафиксировать предотказ, а обслуживающему персоналу дистанций СЦБ вмешаться в работу технического объекта для предотвращения отказа. Рисунок 3 показывает: предотказные состояния технического объекта визуализированы одиночной штриховкой, а работоспособные и исправные состояния — двойной штриховкой. Все заштрихованное на рисунке это области безотказных состояний объекта при условии их исправности.

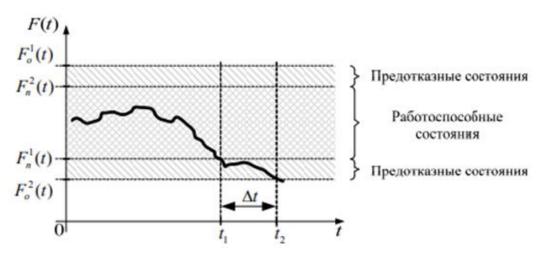


Рис. 3 Предотказное состояние технического объекта

Необходимо учитывать изменения параметров технического объекта. Если они близки к предельным значениям, но их ухудшение не происходит, то система может ошибочно показывать о возможных отказах, такое состояние называют ложным. Это не приведет к поломке или повреждению оборудования [12].

Безопасность устройств и систем железнодорожной автоматики и телемеханики (ЖАТ) напрямую зависит от их отказоустойчивости. Именно отказы, их частота и последствия, определяют уровень безопасности, который, в свою очередь, является ключевым фактором безопасности всего процесса перевозок.

В период с 1 января по 30 апреля 2024 года по Кошурниковской дистанции СЦБ по вине работников хозяйства автоматики и телемеханики транспортных происшествий и иных, связанных с нарушением правил безопасности движения и эксплуатации железнодорожного транспорта, событий не допущено.

Общее количество отказов в работе устройств ЖАТ за отчетный период 2024 года по сравнению с аналогичным периодом прошлого года составило 43 отказов против 71, в том числе:

```
Всего отказов 43/71 (снижение на 39,4%)
СЦБ 40/69 (снижение на 42,0%)
УКСПС 0/0 (0%)
КТСМ 2/2 (0%)
```

Всего по $\coprod -17/20$; + \coprod Ч-8 2/3, \coprod Ч-6 2/1

ПР –

ШЧ-8

ШЧ-6

8/16;

3/3;

2/1.

Количество отказов по вине причастных служб распределилось следующим образом:

```
По СЦБ – 17/18, (кража, порча устройств – 0/0), УКСПС – 0/0, КТСМ – 0/2;
Ш –
           17/20; (снижение на 15%)
\Pi -
          8/26;
                   (\Pi \Psi - 9 - 0/2, \Pi \Psi - 10 - 8/23, \Pi \Psi - 11 - 0/1)
-\epsilon
                   (94-6-2/1, 94-7-1/0)
          3/1:
Д-
          0/0;
B-
          0/0;
T –
           1/0;
ДРП –
          1/0:
 РЦС –
          0/0;
ДКС –
          0/3;
ДПМ - 0/1;
```

Отказы по системам сигнализации, централизации и блокировки уменьшились на 42%, составив 40 случаев. В то же время, количество отказов по УКСПС осталось на нулевом уровне, а по КТСМ не изменилось, составив 2 отказа.

По вине причастных служб зарегистрировано 17 отказов, что также демонстрирует снижение на 15% по сравнению с прошлым годом. Основные причины отказов распределились между различными подразделениями, при этом наибольшее количество отказов зафиксировано в ПЧ-10.

Это свидетельствует о том, что происходит снижение отказов и отсутствием серьезных происшествий, что говорит о повышении безопасности устройств железнодорожной автоматики и телемеханики.

Внедрение и разработка систем технической диагностики дистанции имеют ключевое значение для обеспечения безопасности на производстве, чтобы обеспечить безопасность на железных дорогах. Работа таких систем обеспечивает своевременное устранение неисправностей, что способствует уменьшению рисков и аварий. Современные технологии обеспечивают качество и большую точность системы сигнализации, централизации и блокировки, тем самым обеспечивая своевременную возможность реагирования на отклонения в работе устройств [7-14].

Внедрение систем диагностики в производство улучшают работу оборудования, продлевают срок его службы и уменьшает затраты на его обслуживание. Таким образом, оптимизация технического обслуживания увеличивает эффективность работы.

Заключение

На основании проведенного исследования можно сделать следующий вывод, что существующие системы технической диагностики и мониторинга СЦБ не всегда обеспечивают высокую скорость и точность динамики, но тем не менее:

- 1. Современные цифровые технологии, такие как искусственный интеллект, машинное обучение, облачные технологии и мобильные приложения, значительно повышают эффективность и безопасность функционирования работ.
- 2. Создание общей единой цифровой системы для мониторинга и управления оборудованием позволяет обеспечивать эффективное решение проблем и предотвращать аварийные ситуации. Также, системы учета и систематизации отказов и неисправностей увеличивают надежность и качество технического обслуживания автоматических устройств, что в конечном итоге обеспечивает стабильную работу железнодорожных путей.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Абрамов О.В. Мониторинг и прогнозирование технического состояния систем ответственного назначения // Информатика и системы управления. 2011. № 2 (28). С. 4-15.
- 2. Долгов М. В., Веселов А. А., Бородуля В. О. Мониторииг технического состояния устройств ЖАТ // Транспорт Российской Федерации. 2006. № 5. С. 88-89.
- 3. Кузнецов В.В. Дистанционная диагностика: новые технологии и их применение в сигнализации / В.В. Кузнецов, С.С. Смирнов // Инновации в транспорте. 2022. № 4. С. 34-39.
- 4. Манко Г. Обнаружение и объяснение неисправностей с помощью анализа больших данных в потоках датчиков // Экспертные системы и приложения. 2017. Т. 87. С. 141-156.
- 5. Сапожников В.В., Сапожников Вл.В. Основы технической диагностики. М.: Маршрут, 2004. 316 с.
- 6. Salierno J. Architecture of predictive maintenance of railway points based on big data analysis / J. Salierno, S. Morvillo, L. Leonardi, J. Cabri // In: Dupuy-Chessa, S., Proper, H. (eds.) Seminars on the design of advanced information systems. 2020. Vol. 3. 382 p.
- 7. Пультяков, А. В. Техническая диагностика и мониторинг состояния устройств железнодорожной автоматики и телемеханики на восточном полигоне / А. В. Пультяков, Р. В. Лихота, В. А. Алексеенко // Образование наука производство: сб. ст. Чита: ЗабИЖТ ИрГУПС, 2022. С. 215-223.
- 8. Пультяков А.В., Алексеенко В.А. Организация работы центров технической диагностики и мониторинга устройств автоматики и телемеханики на Восточном полигоне // Транспорт: наука, техника, управление. 2023. №1. С. 23-28.
- 9. Никитин, А. Б. Средства технической диагностики и удалённого мониторинга СТД-МПК / А. Б. Никитин, С. В. Бушуев, К. В. Гундырев [и др.] // Автоматика, связь, информатика. 2012. № 10. С. 6-8.
- 10. Черезов Г.А. Современное состояние диагностирования объектов инфраструктуры железнодорожной автоматики и телемеханики // Вестник транспорта Поволжья. 2017. № 2(62). С. 62-66.

- 11. Федоров Н.В., Полежаев К.В. Развитие функционала систем ЖАТ и диагностики // Автоматика, связь, информатика. 2021. № 1. С. 7-9.
- 12. Шамов И.С. Средства диагностики инструмент для снижения отказов // Автоматика, связь, информатика. 2021. № 1. С. 14-15.
- 13. Панов А.А. Потенциал развития систем мониторинга // Автоматика, связь, информатика. 2021. № 1. С. 18-20.
- 14. Пультяков, А. В. Управление инцидентами в системе технической эксплуатации микропроцессорных устройств железнодорожной автоматики и телемеханики / А. В. Пультяков, Р. В. Лихота, В. А. Алексеенко // Транспорт Урала. 2020. № 1(64). С. 43-47.
- 15. Brown A., Williams T. Advances in Remote Monitoring and Diagnostics for Railway Signaling Systems / A. Brown, T. Williams // International Journal of Rail Transportation. 2020. Vol. 8. No. 2. Pp. 123-135.
- 16. Эпухо А.П. Введение в теоретическое программирование (беседы о методе). М.: Наука, 2020. 288 с.
- 17. Yang, J. Predictive maintenance of point machines based on digital twins / J. Yang, Y. Sun, Y. Cao, S. Hu // Information. 2021. No. 11. Vol. 12. 485 p.

REFERENCES

- 1. Abramov O.V. Monitoring and forecasting of the technical condition of responsible systems / O.V.Abramov // Informatics and management systems. 2011. No 2 (28). Pp. 4-15.
- 2. Dolgov M. V. Monitoring the technical condition of harvester devices / Dolgov M. V., Veselov A. A., Borodulya V. O. // Transport of the Russian Federation. 2006. No 5. Pp. 88-89.
- 3. Kuznetsov V.V. Remote diagnostics: new technologies and their application in signaling / V.V. Kuznetsov, S.S. Smirnov // Innovations in transport. 2022. No. 4. Pp. 34-39.
- 4. Manco G. Fault detection and explanation using big data analytics in sensor streams / G. // Expert systems and applications. 2017. Vol. 87. Pp. 141-156.
- 5. Sapozhnikov V.V., Sapozhnikov V.V. Fundamentals of technical diagnostics. Moscow: Marsh-rut, 2004. 316 p.
- 6. Pultyakov A.V., Likhota R.V., Alekseenko V.A. Technical diagnostics and monitoring of the condition of railway automation and telemechanics devices at the landfill. Materials of the VI All-Russian Scientific-practical conference with the international a participant // Education -science production. Chita: ZABIZHT IrGUPS, 2022. Pp. 215-223.
- 7. Salierno J. Architecture of predictive maintenance of railway points based on big data analysis / J. Salierno, S. Morvillo, L. Leonardi, J. Cabri // In: Dupuy-Chessa, S., Proper, H. (eds.) Seminars on the design of advanced information systems. 2020. Vol. 3. 382 p.
- 8. Pultyakov A.V., Alekseenko V.A. Organization of the work of centers for technical diagnostics and monitoring of automation and telemechanics devices in the Eastern region // Transport: science, technology, management. 2023. No. 1. Pp. 23-28.
- 9. Nikitin, A. B. Means of technical diagnostics and remote monitoring of STD-MPK / A. B. Nikitin, S. V. Bushuev, K. V. Gundyrev [et al.] // Automation, communication, informatics. 2012. No.10. Pp. 6-8.
- 10. Cherezov G.A. The current state of diagnostics of railway automation and telemechanics infrastructure facilities // Bulletin of transport of the Volga region. 2017. No. 2(62). Pp. 62-66.
- 11. Fedorov N.V., Polezhaev K.V. Development of functional systems of sensors and diagnostics // Automation, communication, informatics. 2021. No. 1. Pp. 7-9.
- 12. Shamov I.S. Diagnostic tools a tool for reducing failures // Automation, communications, informatics. 2021. No. 1. Pp. 14-15.
- 13. Panov A.A. The potential for the development of monitoring systems // Automation, communications, informatics. 2021. No. 1. Pp. 18-20.

- 14. Pultyakov, A. V. Incident management in the technical operation system of microprocessor devices of railway automation and telemechanics / A. V. Pultyakov, R. V. Likhota, V. A. Alekseenko // Transport of the Urals. 2020. No. 1 (64). P. 43-47.
- 15. Brown A., Williams T. Advances in Remote Monitoring and Diagnostics for Railway Signaling Systems / A. Brown, T. Williams // International Journal of Rail Transportation. 2020. Vol. 8, No. 2. Pp. 123-135.
- 16. Epujo A.P. Introduction to theoretical programming (conversations about the method). Moscow: Nauka, 2020. 288 p.
- 17. Yang, J. Predictive maintenance of point machines based on digital twins / J. Yang, Y. Sun, Y. Cao, S. Hu // Information. 2021. No. 11. Vol. 12. 485 p.

Информация об авторах

Савицкая Яна Александровна - студент группы СОД2-24-1, Красноярский институт железнодорожного транспорта, г. Красноярск, e-mail: savitskaya_2004@internet.ru

Мороз Елена Федоровна - канд.филос.наук, доцент, доцент кафедры Управление персоналом, Красноярский интитут железнодорожного транспорта, г.Красноярск, e-mail: moroslena@yandex.ru

Authors

Savitskaya Yana Aleksandrovna - student of SOD group 2-24-1, Krasnoyarsk Institute of Railway Transport, Krasnoyarsk, e-mail: savitskaya_2004@internet.ru

Moros Elena Fedorovna-Candidate of Philology.PhD, Associate Professor, Associate Professor of the Department of Personnel Management, Krasnoyarsk Institute of Railway Transport, Krasnoyarsk, e-mail: moroslena@yandex.ru