Яцкевич Н.С., Зарубин А.Д., Астраханцев Л.А.

Иркутский государственный университет путей сообщения, г. Иркутск, Российская Федерация

МОДЕЛИРОВАНИЕ ВЫПРЯМИТЕЛЬНОГО АГРЕГАТА ДЛЯ ОБЕСПЕЧЕНИЯ ТЯГИ ПОЕЗДОВ НА ПОСТОЯННОМ ТОКЕ ПОВЫШЕННОГО НАПРЯЖЕНИЯ НА УЧАСТКЕ ЖЕЛЕЗНОЙ ДОРОГИ НИЖНЕУДИНСК – ХУДОЕЛАНСКАЯ

Аннотация. Электрификации железных дорог является весомым вкладом в развитие страны — это крайне эффективный технологический процесс при транспортировании грузов. В любом из этапов развития электрификация была основополагающим звеном реконструкции железнодорожного транспорта. Это двигатель технологического прогресса во всех технологических сферах страны, что непосредственно влияет на освоение новых территорий.

Выполнено моделирование трёхфазного мостового двенадцатипульсового выпрямителя, необходимого для энергетического обеспечения тяги поездов на участке дороги Нижнеудинск — Худоеланская при использовании существующей силовой аппаратуры и контактной сети, с использованием поездов массой 7100 т. и трехсекционным локомотивом, сравнение полученной системы тяги постоянного тока напряжением 37,1 кВ с существующей на участке системой тяги переменного тока 25 кВ.

Ключевые слова. Электрификация железных дорог, система тяги постоянного тока, повышение эффективности, выпрямительный агрегат.

Yatskevich N.S., Zarubin A.D., Astrakhantsev L.A.

Irkutsk State Transport University, Irkutsk, Russian Federation

MODELING OF A RECTIFIER UNIT TO PROVIDE TRACTION OF HIGH-VOLTAGE DC TRAINS ON THE NIZHNEUDINSK – KHUDOYELANSKAYA RAILWAY SECTION

Abstract. Electrification of railways is a significant contribution to the development of the country - it is an extremely effective technological process in the transportation of goods. At any stage of development, electrification was a fundamental link in the reconstruction of railway transport. It is the engine of technological progress in all technological spheres of the country, which directly affects the development of new territories.

A three–phase bridge twelve-pulse rectifier was simulated, which is necessary for the power supply of train traction on the Nizhneudinsk - Khudoelanskaya road section using existing power equipment and a contact network using trains weighing 7,100 tons and a three-section locomotive, and a comparison of the obtained 37.1 kV DC traction system with the existing 25 kV AC traction system on the section.

Keywords. Railway electrification, DC traction system, efficiency improvement, rectifier unit.

На участке Нижнеудинск—Худоеланская располагается две тяговых подстанции: ЭЧЭ–6 — Нижнеудинск и ЭЧЭ–7 — Худоеланская [1]. Продольный профиль участка железной дороги представлен на рисунке 1



Рис. 1 – Продольный профиль участка железной дороги ст. Нижнеудинск – ст. Худоеланская

В границах расчетного участка тяговые подстанции присоединены к электрическим сетям 110 кВ Иркутскэнерго.

Для определения значений токов наиболее и наименее загруженных плеч питания была использована программа «КОРТЭС» [2]. Исходными данными для расчетов будут являться профиль пути, ограничения скорости, тип электровоза (Ермак), вес поезда (7100 тонн в четном и в нечетном направлении).

Результаты тягового расчета представлены в таблице 1. Характеристики нечетного грузового поезда представлены в таблице 2. Характеристики четного грузового поезда представлены в таблице 3.

Результаты тягового расчета

Таблица 1

	Направление	Перегон	Длина	Время хода		Расход энергии	
Масса поезда, тонн			КМ	полное	под током	активный	полный
				мин.	мин.	кВтч	кВАч
7100	четное	Нижнеудинск - Худоеланская	47	40,3	32	5759	6844,7
7100	нечетное	Худоеланская - Нижнеудинск	47	40,4	32,1	1416,3	3931,9

Таблица 2

Характеристика четного грузового поезда

Масса поезда, тонн	Перегон	Удельный расход электроэнергии		Техническая	Максимальный	Максимальный	
		актив. Втч/ткм	полн. ВАч/ткм	скорость	ток обмоток двигателя	ток поезда	
7100	Нижнеудинск- Худоеланская	12,9	17,8	66,7	126	663	

Характеристики нечетного грузового поезда

Масса поезда, тонн	Перегон	Удельный расход электроэнергии		Техническая	Максимальный	Максимальный	
		актив.	полн.	скорость	перегрев обмоток	ток поезда	
		Втч/ткм	ВАч/ткм		двигателя		
7100	Худоеланская- Нижнеудинск	7,2	12,7	67,0	98	663	

С помощью программного комплекса MATLAB было выполнено моделирование системы тягового электроснабжения постоянного тока напряжением 37,1 кВ [2-6]. Для моделирования нагрузки системы используется модель трехсекционного тягового локомотива, с общей расчетной массой поезда 7100 т. Данная нагрузка создается на валах двигателя локомотива, общее количество двигателей 12 штук. В качестве расчетной модели участка был принят условно прямой профиль пути в межподстанционной зоне. Модель участка железной дороги представлена на рисунке 2.

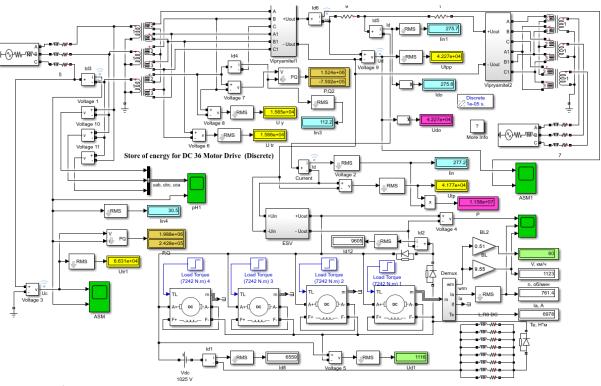


Рис. 2 — Модель участка железной дороги, электрифицированного по системе постоянного тока напряжением 37,1 кВ на условно прямом участке

При создании модели выпрямителя использовался трехфазный двенадцатипульсовой управляемый выпрямитель последовательного типа, выполненный с помощью двух мостовых схем [7-10] (рисунок 3).

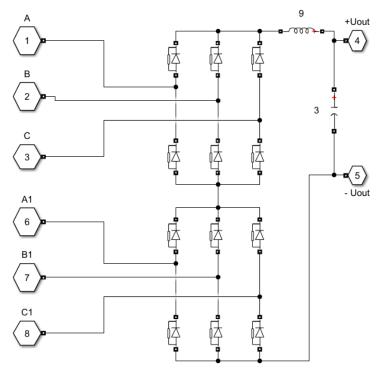


Рисунок 3 - Модель выпрямителя

Полученные результаты:

- ток в контактной сети = 275,7 A;
- сохранена участковая скорость = 60 км/ч;
- напряжение на выходе выпрямительной установки = 42270 В.

Графики нагрузки системы внешнего электроснабжения представлены на рисунке 4

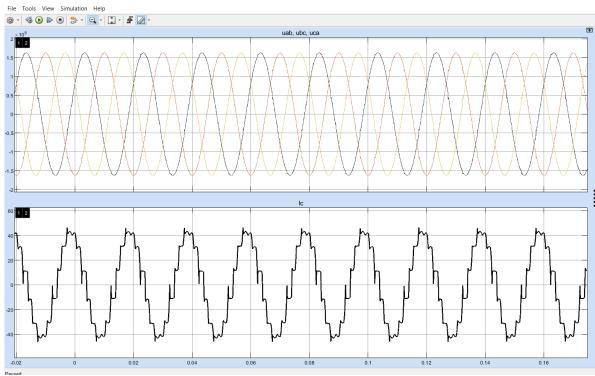


Рисунок 4 – Графики напряжения и тока во внешней системе электроснабжения

Выполнен спектральный анализ мгновенных значений напряжения и тока с помощью блока powergui и функции FFT-анализа в нем, на вводе тяговой преобразовательной подстанции представлен на рисунке 5 и 6

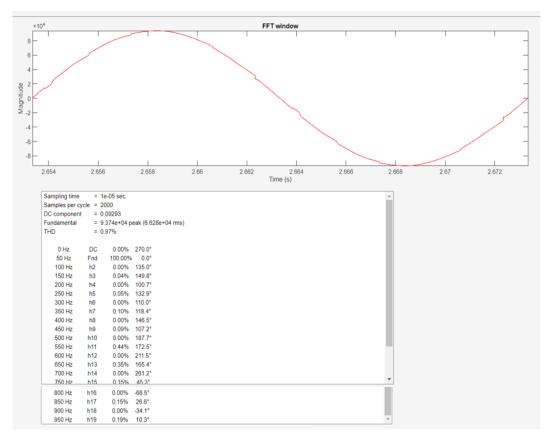


Рисунок 5 – Результаты спектрального FFF-анализа напряжения.

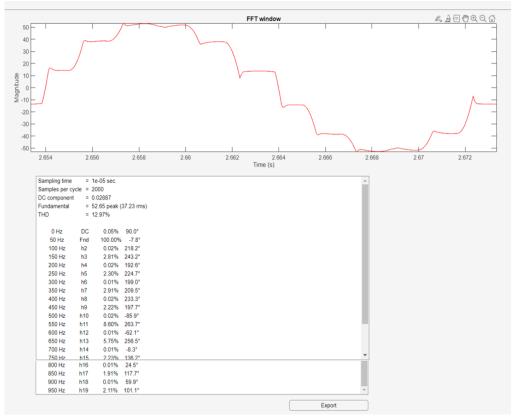


Рисунок 6 – Результаты спектрального FFF-анализа тока

Полученные данные моделирования показывают, что в ток в контактной сети при системе постоянного тока 37.1 kB (275.7 A) заметно ниже полученных значений при системе переменного тока 25 kB (485 A), примерно на 43%. Участковая скорость при этом сохраняется. Одним из значительных преимуществ является равномерная нагрузка системы внешнего электроснабжения. Нелинейные искажения фазного напряжения THD составляют - 0.97%, а нелинейные искажения фазного тока -12.97%.

Полная мощность в одной фазе первичной обмотки преобразовательного трансформатора

$$S_{\Phi 1} = U_{\Phi 1} \cdot I_{\Phi 1},$$
 (1)
 $S_{\Phi 1} = 66,28 \cdot 10^3 \cdot 37,23 = 2467,6 \text{ kBA}.$

Активная мощность в одной фазе первичной обмотки преобразовательного трансформатора

$$P_{\Phi 1} = U_{\Phi 1} \cdot I_{\Phi 1} \cdot \cos \varphi_1,$$

$$P_{\Phi 1} = 66,28 \cdot 10^3 \cdot 37,23 \cdot \cos(6,1) = 2426,32 \text{ kBt}.$$
(2)

Реактивная мощность (мощность сдвига) в одной фазе первичной обмотки преобразовательного трансформатора

$$Q_{\Phi 1} = U_{\Phi 1} \cdot I_{\Phi 1} \cdot \sin \varphi_1,$$

$$Q_{\Phi 1} = 66,28 \cdot 10^3 \cdot 37,23 \cdot \sin(6,1) = 262,21 \text{ kBAp.}$$
(3)

Мощность искажения в одной фазе первичной обмотки преобразовательного трансформатора

$$D = \sqrt{S_1^2 - P_1^2 - Q_1^2},$$

$$D = \sqrt{2467,6^2 - 2426,32^2 - 262,21^2} = 365,05 \text{ kBAp}.$$
(4)

Коэффициент мощности преобразовательного агрегата:

$$K_M = \frac{P_{\Phi 1}}{S_{\Phi 1}},$$
 (5)
 $K_M = \frac{2426,32}{2467,6} = 0,983.$

Потери активной мощности в контактной сети вычисляем по формуле (6)

$$P = I^2 \cdot R,\tag{6}$$

где I – ток электровоза, A;

R — сопротивление сети, Ом.

$$P = 275.7^2 \cdot 3 = 228.031 \text{ kBt}.$$

Потери активной мощности фазы С

$$P_A = \frac{228,031}{3} = 76,01 \text{ кВт.}$$

КПД выпрямителя рассчитываем по формуле

$$\eta = \frac{P_{AT}}{P_{AT} + P_A} \cdot 100 \%, \tag{7}$$

где P_{AT} — активная мощность на выходе трансформатора.

$$\eta = \frac{2,028 \cdot 10^6}{2,028 \cdot 10^6 + 76,01 \cdot 10^3} \cdot 100 \% = 96,3 \%.$$

Заключение. Результаты моделирования системы тяги на постоянном токе повышенного напряжения указывают на существующие преимущества данной системы, такие как: равномерная нагрузка системы внешнего электроснабжения, улучшение качества электрической энергии, уменьшение тока в контактной сети ведет к уменьшению общих потерь энергии при ее передаче.

Система тяги постоянного тока повышенного напряжения является перспективным направлением развития тягового электроснабжения, которая позволит реализовать задачи высокоскоростного и тяжеловесного движения поездов.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Краткая характеристика Восточно Сибирской железной дороги / Восточно-Сибирская железная дорога ФИЛИАЛ ОАО «РЖД». Иркутск, 2022.
- 2. Зарубин, А. Д. Результаты исследования системы тяги постоянного тока повышенного напряжения / А. Д. Зарубин, М. Г. Соболев, Л. А. Астраханцев // Молодая наука Сибири. 2022. № 2(16). С. 155-165. EDN MJBRPG.
- 3. Зарубин, А. Д. Моделирование перспективных систем тягового электроснабжения в программном комплексе MATLAB Simulink / А. Д. Зарубин, В. А. Тихомиров, Л. А. Астраханцев // Интеллектуальная энергетика: Сборник трудов II Всероссийской научно-практической конференции, Томск, 12–14 ноября 2024 года. Томск: Национальный исследовательский Томский политехнический университет, 2024. С. 152-156. EDN WJKVUE.
- 4. Крюков А.В., Закарюкин В.П. Компьютерные технологии для моделирования систем электроснабжения железных дорог переменного тока // Транспорт Российской Федерации. Журнал о науке, практике, экономике. 2010. № 3 (28). EDN: SYSRHP
- 5. Крюков А.В., Закарюкин В.П. Моделирование систем тягового электроснабжения постоянного тока: монография / Иркутск: ИрГУПС, 2022. 184 с.
- 6. Компьютерное моделирование электромеханических систем постоянного и переменного тока в среде Matlab Simulink / Ю.Н. Дементьев, В.Б. Терехин, И.Б. Однокопылов и др. Томск: ТПУ, 2018. 497 с. EDN: YVCXDN.
- 7. Энергетическая эффективность тягового привода магистральных электровозов / Н. Л. Рябченок, Т. Л. Алексеева, Л. А. Астраханцев, В. А. Тихомиров // Известия Транссиба. 2020. № 1(41). С. 29-41. EDN WFZXRY.
- 8. Перспективное развитие теории электромагнитных, энергетических процессов и совершенствование технологии электрической тяги / Н. Л. Рябченок, Т. Л. Алексеева, Л. А. Астраханцев [и др.] // Современные технологии. Системный анализ. Моделирование. 2023. № 1(77). С. 144-155. DOI 10.26731/1813-9108.2023.1(77).144-155. EDN KNLUKG.
- 9. Аржанников Б.А. Тяговое электроснабжение постоянного тока скоростного и тяжеловесного движения поездов. Екатеринбург: Изд-во УрГУПС, 2012. 207 с.
- 10. Бурков А.Т. Электроника и преобразовательная техника. М.: УМЦ по образованию на ж.-д. трансп., 2015. Т. 2. 307 с.

BIBLIOGRAPHIC LIST

1. Brief description of the East Siberian Railway / THE East Siberian Railway is A BRANCH OF Russian Railways. – Irkutsk, 2022.

- Zarubin, A.D. The results of a study of a high-voltage DC traction system / A.D. Zarubin, M. G. Sobolev, L. A. Astrakhantsev // Young Science of Siberia. 2022. № 2(16). Pp. 155-165. EDN MJBRPG.
- 3. Zarubin, A.D. Modeling of promising traction power supply systems in the MATLAB Simulink software package / A.D. Zarubin, V. A. Tikhomirov, L. A. Astrakhantsev // Intellectual energy : Proceedings of the II All-Russian Scientific and Practical Conference, Tomsk, November 12-14, 2024. Tomsk: National Research Tomsk Polytechnic University, 2024. pp. 152-156. EDN WJKVUE.
- 4. Kryukov A.V., Zakaryukin V.P. Computer technologies for modeling AC railway power supply systems // Transport of the Russian Federation. A journal about science, practice, and economics. 2010. № 3 (28). EDN: SYSRHP
- 5. Kryukov A.V., Zakaryukin V.P. Modeling of DC traction power supply systems: monograph / Irkutsk: IrGUPS, 2022. 184 p.
- 6. Computer modeling of electromechanical DC and AC systems in the Matlab Simulink environment / Yu.N. Dementiev, V.B. Terekhin, I.B. Odnokopylov et al. Tomsk: TPU, 2018. 497 p. EDN: YVCXDN.
- 7. Energy efficiency of traction drive of mainline electric locomotives / N. L. Ryabchenok, T. L. Alekseeva, L. A. Astrakhantsev, V. A. Tikhomirov // Izvestiya Transsib. 2020. № 1(41). Pp. 29-41. EDN WFZXRY.
- 8. Promising development of the theory of electromagnetic, energy processes and improvement of electric traction technology / N. L. Ryabchenok, T. L. Alekseeva, L. A. Astrakhantsev [et al.] // Modern technologies. System analysis. Modeling. − 2023. − № 1(77). − Pp. 144-155. − DOI 10.26731/1813-9108.2023.1(77) .144-155. − EDN KNLUKG.
- 9. Arzhannikov B.A. Traction DC power supply for high-speed and heavy-duty train traffic. Yekaterinburg: USUPS Publishing House, 2012. 207 p.
- 10. Burkov A.T. Electronics and conversion technology. Moscow: UMTS on education in railway transport, 2015. Vol. 2. 307 p.

Информация об авторах

Яцкевич Никита Сергеевич – студент гр. СОД.1-20-1, Иркутский государственный университет путей сообщения, г. Иркутск, email: 202099278@irgups.ru

Зарубин Андрей Денисович – аспирант, Иркутский государственный университет путей сообщения, г. Иркутск, e-mail: amashi99@yandex.ru

Астраханцев Леонид Алексеевич –д.т.н., профессор кафедры Электроэнергетика транспорта, Иркутский государственный университет путей сообщения, г. Иркутск, e-mail: astrahancev1943@mail.ru

Informations about the authors

Yatskevich Nikita Sergeevich – student of gr. SOD.1-20-1, Irkutsk State Transport University, Irkutsk, email: 202099278@irgups.ru

Zarubin Andrey Denisovich – graduate student, Irkutsk State Transport University, Irkutsk, e-mail: amashi99@yandex.ru

Astrakhantsev Leonid Alekseevich – Doctor of Technical Science, Professor of the Department of Electric Power Transport, Irkutsk State Transport University, Irkutsk, e-mail: astra-hancev1943@mail.ru