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Резюме 
Возникновение отказов в контактной сети, связанных с повреждением секционных изоляторов, является недопустимым, 
но все же остается актуальной проблемой на данный момент. Повреждения изоляторов разделяются на механические и 
электрические. Первые появляются в результате удара токоприемника электроподвижного состава о тело секционного 
изолятора, вторые – вследствие коммутаций, формирующихся в контактной сети при проходе электроподвижного со-
става под секционным изолятором. В данной статье авторами рассматриваются переходные процессы, возникающие в 
тяговой сети постоянного тока при проходе токоприемника электроподвижного состава под секционным изолятором. 
Составлены схема замещения схемы питания участка тяговой сети и уравнения, описывающие фазу прохождения элек-
тровоза секционного изолятора. Построена математическая модель, учитывающая токовую нагрузку электроподвижного 
состава, скорость его движения и тяговую характеристику. Математическая модель состоит из двух частей. В первой 
электровоз рассматривается как источник тока, во второй модели описывается электромеханическая схема электропо-
движного состава и его движение. Рассчитана энергия дуги, которая появляется на секционном изоляторе, определена ее 
зависимость от скорости электроподвижного состава и величины потребляемого тока. Предложен способ, позволяющий 
снизить негативное влияние переходных процессов на элементы контактной сети и, соответственно, повысить надеж-
ность и безопасность системы. Результаты исследования будут полезны при разработке систем автоматизированного 
управления движением электроподвижных составов при переходах между секциями контактной сети. 
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Abstract 
Overhead contact network failures due to damaged sectional insulators are unacceptable, yet remain a pressing issue. Insulator 

damage is divided into mechanical and electrical. Mechanical failures occur when the rolling stock pantograph strikes the sec-

tional insulator, while electrical failures result from switching events occurring in the overhead contact system when the rolling 

stock passes under the sectional insulator. In this article, the authors examine transient processes occurring in a DC traction net-

work when the rolling stock pantograph passes under the sectional insulator. An equivalent circuit diagram for the power supply 

circuit of a section of the traction network and equations describing the phase of an electric locomotive's passage through the 

sectional insulator have been complied. A mathematical model is constructed that takes into account the rolling stock current 

load, its speed, and traction characteristics. The mathematical model consists of two parts. The first considers the electric loco-

motive as a current source, while the second model describes the electromechanical circuit of the electric rolling stock and its 

motion. The arc energy generated on the section insulator is calculated, and its dependence on the rolling stock speed and the 

current consumption is determined. A method is proposed to reduce the negative impact of transient processes on overhead con-

tact network components, thereby increasing the system's reliability and safety. The research results will be useful in developing 

automated control systems for electric rolling stock movements between overhead contact system sections. 
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Введение 

Работу электроподвижного состава (ЭПС) 
невозможно представить без контактной сети, 
основной частью которой является контактная 
подвеска. Главной задачей контактной подвески 
является обеспечение надежного и непрерывного 
токосъема с причинением минимального ущерба 
контактному проводу, токоприемнику электро-
подвижного состава и другим элементам инфра-
структуры. Для качественного токосъема при 
движении поезда должны быть исключены все 
разрывы между токоприемником и контактным 
проводом, а также все удары токоприемника о 
контактную сеть, возникающие из-за разницы в 
эластичности в контактной подвеске. Помимо 
механических повреждений недопустимо элек-
тромагнитное влияние на сторонние устройства, 
возникающее вследствие появления электриче-
ской дуги при движении ЭПС [1, 2]. К факторам, 
ухудшающим качество токосъема, можно отне-

сти отрывы токоприемника от контактного про-
вода из-за разницы в эластичности контактной 
подвески, колебания ЭПС при движении, возни-
кающие вследствие неравномерной структуры 
железнодорожных путей, высокое значение по-
требляемого тока, использование нескольких 
токоприемников [3]. 

Анализ причин отказов контактной сети 
(рис. 1) показывает, что основными причинами 
нарушения нормальной работы являются обры-
вы и пережоги проводов контактной сети (24 % 

от количества отказов). 
Можно отметить, что значительная часть 

отказов приходится на секционные изоляторы 
(СИ) –20 в год [4]. Излом секционных изолято-
ров приводит к экономическим потерям, свя-
занным с устранением повреждений и задерж-
кой в движении поездов. Повреждение СИ вли-
яет и на безопасность персонала при выполне-
нии работ. Таким образом, проблема эксплуа-

 
Рис. 1. Статистический анализ причин отказов контактной сети за 2022 г. 

Fig. 1. Statistical analysis of the causes of contact network failures in 2022 
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тации СИ является актуальной. Приобретение 
новых СИ связано с большими капиталовложе-
ниями, поэтому перспективным направлением 
можно считать совершенствование правил про-
хода электроподвижного состава под СИ. 

Для повышения надежности работы кон-
тактной сети, а также для удобства ее обслужи-
вания контактная сеть разделяется на секции. 
Каждая секция имеет свой фидер, что позволя-
ет выводить в ремонт отдельные участки, не 
нарушая работу других секций, а также переда-
вать питание на секции от других тяговых под-
станций. Электрическое разделение секций 
осуществляется за счет СИ, встраиваемого в 
контактную сеть. СИ состоит из изолирующей 
детали, присоединяемой к контактному прово-
ду с помощью металлических оконцевателей, 
боковых скользунов и дугогасительного 
устройства, работающего по принципу удлине-
ния дуги через дугогосительные рога (рис. 2). 

Помимо электрической прочности СИ должен 
обладать и механической прочностью, позво-
ляющей выдерживать натяжение контактной 
подвески и нажатие токоприемника на СИ. 

Отличительная особенность заключается в 
возможности прохождения ЭПС с поднятым то-
коприемником по СИ. При проходе по СИ полоз 
токоприемника ЭПС попадает на боковые сколь-
зуны. За счет смещенного расположения воз-
душных промежутков между скользунами токо-
приемник на протяжении всего СИ остается в 
соприкосновении минимум с одним из скользу-
нов. Данная конструкция позволяет обеспечить 

непрерывное электроснабжение ЭПС. Проход 
токоприемника по СИ должен обеспечиваться 
как при низких скоростях, так и при организации 
скоростного движения, для чего конструкцию 
его совершенствуют и максимально облегчают, 
сохраняя прочностные характеристики [5–7]. 

При проходе токоприемника по СИ за 
счет разности в характеристиках жесткости 
контактного провода и СИ происходит удар 
токоприемника о СИ. Ударные воздействия на 
протяжении длительного времени приводят к 
ухудшению токосъема, а также к повреждени-
ям СИ и токоприемника [8]. 

Помимо механических повреждений при 
проходе токоприемника могут возникать крат-
ковременные электрические дуги разных мощ-
ностей. Дуги малых мощностей формируются 
при резком возрастании нагрузки на контакт-
ных вставках токоприемника, что происходит 
при уменьшении числа вставок, контактирую-
щих со скользуном, вследствие попадания то-
коприемника в воздушный промежуток между 
скользунами. Дуги высоких мощностей возни-
кают при замыкании токоприемником различ-
ных скользунов при проходе ЭПС на нейтраль-
ные вставки или отключенные секции контакт-
ной сети. Дуги высоких мощностей гасятся на 
рогах токоприемника. Электрические дуги по-
являются при условии работы ЭПС с полной 
нагрузкой [8]. Целью данной статьи является 
представление результатов факторного анализа 
негативного воздействия на СИ электрических 
процессов, возникающих при проходе его ЭПС. 

 
Рис. 2. Внешний вид секционного изолятора: 

1 – изолирующие стержневые элементы; 2 – монтажная плата; 3 – боковой скользун; 
4 – подвесной кронштейн; 5 – контактный провод; 6 – дугогосящие рога; 7 – зажимы 

Fig. 2. External appearance of the sectional insulator: 

1 – insulating rod elements; 2 – mounting board; 3 – side bearing; 

4 – suspension bracket; 5 – contact wire; 6 – arc-extinguishing horns; 7 – clamps 
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Методика исследования 

Рассмотрим модель прохождения СИ то-
коприемником электровоза под нагрузкой. СИ 
разделяет две секции контактной сети, запи-
танные от разных фидеров, из-за чего при под-
ходе к нему электровоза под нагрузкой образу-
ется разница потенциалов: напряжение в сек-
ции с нагруженной стороны, откуда движется 
ЭПС, оказывается ниже напряжения с противо-
положной стороны. Разница потенциалов опре-
деляется сопротивлением от шин питающей 
подстанции до места установки изолятора. При 
заходе на отключенную секцию разница потен-
циалов будет равна уровню напряжения в кон-
тактной сети, откуда движется ЭПС [9]. 

Схема питания составлена для участка 
контактной сети с двухсторонним питанием. СИ 
установлен в районе расположения тяговой под-
станции, разделяя секции, запитанные от разных 
фидеров. Параметры контактной подвески вклю-
чают активное и индуктивное сопротивление. На 
тяговой подстанции учитывается индуктивность 
реактора. Модель упрощена в части сглаживаю-
щего фильтра, а преобразователи, трансформа-
торы подстанции и система внешнего электро-
снабжения представлены одним элементом – 

внутренним активным сопротивлением. 
Конструкция СИ предполагает, что при 

проходе токоприемника происходит замыкание 
секций с последующим размыканием. Замыка-
ние осуществляется через полоз токоприемника, 
контактирующего одновременно с двумя сколь-
зунами, подключенным к контактным проводам 
с двух сторон изолятора. Цепь разрывается, ко-
гда полоз токоприемника остается в контакте 
только с одним скользуном. 

Процесс прохождения СИ можно разбить 
на три интервала: подход токоприемника; за-
мыкание секций; разрыв цепи, соединяющей 
секции. 

В момент подхода поезд движется, по-
требляя ток, который зависит от профиля, мас-
сы состава и управления его движением. Реко-
мендуется производить переход с одной секции 
на другую без нагрузки и с опущенным токо-
приемником, чтобы снизить вероятность его 
повреждения. Однако обратный подъем после 
выхода на следующую секцию может ухудшить 
ситуацию: при высоких скоростях движения 
или при сильном ветре обратный подъем токо-
приемника будет затруднен за счет аэродина-
мического воздействия. 

При проходе изолятора без опускания то-
коприемника ток нагрузки может составлять от 0 
до номинального тока ЭПС (2 500 А для грузово-
го электровоза). Переход между секциями под 
нагрузкой будет сопровождать временный раз-
рыв цепи, что повлечет образование дуги. Разрыв 
цепи выполняется за счет токоприемника, но при 
движении расстояние будет увеличиваться, пока 
токоприемник не перейдет на следующий сколь-
зун. Тогда дуга, образовавшаяся при разрыве 
контакта, перекинется между скользунами и по-
средством магнитного поля, протекающего по 
ней тока, растянется на разрядных рогах. 

Схема замещения участка тяговой сети с 
ЭПС представлена на рис. 3. E1, E2, R1, R2, L1, L2 

– параметры тяговых подстанций 1 и 2: напря-
жение холостого хода, внутреннее сопротивле-
ние и индуктивность реакторов; R3, L3 – пара-
метры линии питающей секцию, по которой 
движется ЭПС, до перехода; R34, L34 – парамет-
ры контактной сети от точки присоединения 
питающей линии до СИ; R21, L21 – параметры 
контактной сети, где движется ЭПС, от тяговой 
подстанции 2 до точки присоединения питаю-
щей линии; R4, L4 – параметры линии, питаю-
щей секцию, на которую переходит ЭПС, и 
участок контактной сети от точки присоедине-
ния питающей линии до СИ; RД, – сопротивле-
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ние дуги. Коммутация ключа К2 приводит к 
разрыву цепи, содержащей индуктивность. По-
скольку такой разрыв должен мгновенно изме-
нить ток в цепи до нулевого значения, что про-
изойти не может, то в области размыкающихся 
контактов резко повышается напряжение, про-
исходит пробой и ток продолжает течь, но уже 
через канал образовавшейся элек трической 
дуги. Для этого в схему замещения введен эле-
мент с переменным сопротивлением, имитиру-
ющим сопротивление дуги. 

Электрическая дуга имеет нелинейное 
сопротивление, зависящее от ее длины и вели-
чины протекающего тока. В момент разрыва 
цепи длина дуги составляет 50 мм (расстояние 
между дугами разрядника на СИ для систем 
постоянного напряжения), но за счет электро-
магнитного воздействия она растягивается по 
рогам разрядника и цепь разрывается оконча-
тельно. Для описания вольтамперной характе-
ристики дуги возможно использовать уравне-
ние Г. Айртона: 

Д
Д

I

l
lU

+
++= , 

где α, β, γ, δ – постоянные, зависящие от матери-
ала дуг разрядника и параметров воздуха (со-
став, температура); l – длина дуги; IД – ток дуги. 

Дуга представляет собой токопроводящий 
канал, состоящий из плазмы и включающий про-
цессы движения частиц как под действием элек-
тромагнитных полей (внешнего и внутреннего), 
так и механику взаимодействия разогнанных ча-
стиц (температура в дуге достигает порядка 
2 500–3 000 К). Сложность моделирования дуги 
заключается в учете ее инерционных составляю-
щих – индуктивности и тепловых процессов [10, 
11]. При быстрых изменениях тока (изменяется 
быстрее, чем тепловые процессы в дуге) эти две 
составляющие могут компенсировать действия 
друг друга, в этом случае сопротивление дуги 
будет преимущественно активным. 

Если рассматривать упрощенную стати-
ческую характеристику дуги [12], то ее актив-
ное сопротивление можно задать как 

2
Д

Д
Д
I

l

I

l
R

+
+

+
= . 

ЭПС в задачах по расчету нагрузки в си-
стеме тягового электроснабжения замещается 
источником тока, который потребляется элек-
тровозом. Но для задачи с переходными про-
цессами ЭПС следует рассматривать как для 
полной схемы, учитывающей характеристики 
двигателей, их соединение и управление, а 

 
Рис. 3. Схема питания участка тяговой сети (а) и схема замещения (б) 

Fig. 3. Power supply diagram of the traction network section (a) and replacement diagram (б) 
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также механическую составляющую движения 
поезда [13–15]. За счет большой массы состава 
его скорость при прохождении СИ не успеет 
измениться и, соответственно, напряжение на 
клеммах электродвигателя останется постоян-
ным, в отличие от электрических процессов в 
тяговой сети [16]. 

Модель состоит из двух частей – системы 
дифференциальных уравнений, описывающих 
электрическую схему, где ЭПС представлен 
источником тока, и дифференциальных урав-
нений, описывающих электромеханическую 
схему ЭПС и его движение. 

Последние два выражения в системе урав-
нений отражают функциональную связь пара-
метров работы электровоза, получаемую по ре-
зультатам экспериментов – зависимость тока 
ЭПС от скорости и напряжения на токоприем-
нике, а также управления (схема питания, ток 
возбуждения двигателя, сопротивление в цепи 
якоря) и зависимость силы тяги от тока ЭПС и 
работы системы управления: 
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Результаты исследования и их обсуждение 

Время между двумя моментами коммута-
ции зависит от скорости движения ЭПС и кон-
струкции изолятора. Замыкание двух секций 
между собой приводит к распределению тока 

нагрузки между двумя питающими линиями, 
подключенными к разным секциям контактной 
сети. Но с учетом индуктивности воздушных 
линий процесс этот занимает время. При малой 
скорости движения ток в момент замыкания мо-
жет снизиться почти в 2 раза (зависит от соот-
ношения сопротивления линий 3-й и 4-й), что 
создаст более благоприятные условия для про-
хождения токоприемника с точки зрения образо-
вания дуги. 

На рис. 4 приведены графики изменения 
токов и напряжений в секциях контактной сети, 
полученных в результате моделирования про-
хода токоприемника СИ при скорости 60 км/ч с 
токами 350 А и 1 600 А. Поскольку скорость 
прохода смоделирована одинаковая, то время 
между коммутациями (t1 – замыкание, t2 – раз-
рыв цепи) совпадает, но из-за разницы токов 
нагрузки ЭПС продолжительность горения ду-
ги различается. Это видно по графикам тока I34 

и напряжения U3, приходящих со стороны сек-
ции, откуда движется ЭПС. В момент размыка-
ния цепи напряжение резко поднимается, и 
между рогами разрядника образуется дуга. По 
мере ее растягивания и увеличения сопротив-
ления ток снижается до нуля и напряжение ста-
новится равным напряжению в точке подклю-
чения питающей линии. 
 

 
а 

 

 
б 
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Рис. 4. Токи и напряжения в контактной сети при 
проходе секционного изолятора 

электроподвижного состава: 
а и б – при токе 350 А; в и г – при токе 1 600 А 

Fig. 4. Currents and voltages in the contact network 

during the passage of the sectional insulator 

of electric rolling stock: 

a and б – at 350 A; в and г – at 1 600 A 
 

Разрушительное действие дуги определя-
ется количеством энергии, выделяемой в про-
цессе ее горения. Она может быть определена 
по закону Джоуля – Ленца и зависит как от то-
ка, так и от продолжительности его действия. 
Причем зависимость нелинейная, поскольку 
продолжительность протекания тока имеет 
прямую зависимость от его величины. 

На рис. 5 представлены результаты моде-
лирования энергии дуги, образуемой при прохо-
де ЭПС через СИ с поднятым токоприемником 
под нагрузкой. С ростом тока нагрузки, как от-
мечено ранее, продолжительность горения дуги 
увеличивается, что сказывается и на возрастании 
выделяемой энергии. Скорость движения ЭПС 
влияет на момент разрыва цепи: чем меньше 
скорость, тем больше времени длится коммута-
ционный процесс, вызванный замыканием сек-
ций, и тем меньше становится ток, который да-
лее прерывается на изоляторе. Как следствие, с 
увеличением скорости движения ЭПС возраста-
ет и количество энергии, выделяемой в дуге. 

 
а 

 

 
б 

Рис. 5. Зависимость энергии дуги: 
а – от тока; б – от скорости поезда 

Fig. 5. Arc energy dependence: 

а – from current; б – from train speed 

 

Горение дуги на секционном изоляторе 
происходит не только на его разрядных рогах, 
но и в месте контакта с токоприемником. Это 
вызвано динамикой механического взаимодей-
ствия. Поскольку секционный изолятор являет-
ся жесткой точкой контактной сети, то движе-
ние по нему может сопровождаться механиче-
ским ударом с последующим отрывом. Кроме 
того, наклон изолятора (следствие разрегули-
ровки), локальные износы его скользунов и 
вставки токоприемника создают разрывы цепи, 
сопровождающиеся дугой. С продолжительно-
стью эксплуатации такие локальные поврежде-
ния ухудшают процесс токосъема, ускоряя из-
нос и приводя к поломке секционного разъеди-
нителя [2, 7]. 

Как следует из результатов моделирова-
ния и опыта эксплуатации, проход СИ ЭПС 
должен проходить без тока нагрузки. Это мож-
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но сделать, отключив питание двигателей, пе-
рейдя в режим выбега. Однако при движении 
состава на подъем отключение питания и пере-
ход на выбег с дальнейшим включением режи-
ма тяги будут сопровождаться коммутациями, 
которые негативно скажутся на ресурсе элек-
трооборудования электровоза. Более эффектив-
но в данном случае использовать управление 
режимом тяги за счет тока возбуждения, как 
это реализовано в электровозах ЭС6 «Синара». 
Увеличение тока возбуждения позволяет пе-
рейти на тяговую характеристику, при которой 
движение будет происходить с минимальным 
током (рис. 6) [17].  

 

 
Рис. 6. Зависимости силы тяги электровоза 

от скорости движения электроподвижного состава 

при различных токах возбуждения 

Fig. 6. Dependence of the traction force of an electric 

locomotive on the speed of the electric rolling stock 

at different ignition currents 

В этот момент, когда сила тяги будет стре-
миться также к нулю, поезд пройдет участок по 
инерции. Затем ток возбуждения выводится на 
требуемый уровень и тяговые усилия восстанав-
ливаются. В отличие от первого способа управ-
ления прохода СИ, резких скачков тягового тока 
в цепи не будет. 

 

Заключение 

Для реализации управления движения ЭПС 
таким способом потребуется ввести соответству-
ющий алгоритм в автоматику локомотива. Вклю-
чение автоматики может производиться вручную 
или по данным системы контроля движения, в 
которую необходимо будет внести информацию 
о точках на пути следования, где потребуется 
движение либо с опущенным токоприемником, 
либо с нулевым тяговым током. Как вариант, 
возможно использование датчиков в зоне СИ, 
совмещенных с датчиками напряжения. В таком 
случае будет контролироваться заезд на секцию, 
питание которой отключено. Учитывая развитие 
технологий автоматизации ведения поездов и 
концепции единого информационного простран-
ства [18, 19], реализация предложенного способа 
прохода СИ может быть выполнена без кон-
структивных изменений существующих систем. 
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