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Резюме 

В данной статье представлено моделирование колебаний оболочек с использованием в качестве примера остова тягового 
двигателя НБ-514 и цилиндрических резервуаров, а также проведена проверка на сходимость колебаний их физических 
объектов. Особое внимание уделено анализу сеточной сходимости и ее критическому влиянию на точность определения 
частоты основной моды колебаний. В ходе исследования было установлено, что для достижения удовлетворительной 
сходимости результатов моделирования необходимо обеспечить надежное закрепление объекта, а также следует 
применять сетку, шаг которой не превышает 3–5 толщин стенки оболочки. Соблюдение указанных условий позволяет 
значительно снизить погрешность моделирования частоты основной моды колебаний, достигая уровня около 10 % 
относительно экспериментальных данных. Полученные результаты подтверждают высокую эффективность и широкую 
применимость метода конечных элементов для численного анализа сложных конструкций. Это также представляет 
собой важный шаг вперед на пути к созданию цифровых двойников изделий. Разработанная методика позволяет 
существенно сократить расходы на физическое тестирование и значительно улучшить прогнозирование характеристик 
оборудования. Работа развивает современные и инновационные подходы к исследованию, проектированию и 
повышению надежности электрооборудования электровозов, что делает ее особенно актуальной в сфере современного 
локомотивостроения, открывая новые перспективы для интеграции численного моделирования в практику 
проектирования и эксплуатации тягового подвижного состава. 
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Abstract 

This study presents the numerical modeling of shell vibrations using the traction motor frame NB-514 and cylindrical tanks as 
reference objects. A convergence analysis of the modeled vibrations was performed by comparing them with physical exper-
iments. Special attention is paid to the mesh convergence and its critical impact on the accuracy of determining the fundame n-
tal mode frequency. The study has shown that achieving satisfactory convergence of modeling results requires reliable bound-
ary conditions and the use of a finite element mesh with a step size not exceeding 3–5 times the wall thickness of the shell. 
Compliance with these conditions significantly reduces the modeling error of the fundamental frequency, bringing it down to 
approximately 10 % relative to experimental data. The results confirm the high efficiency and broad applicability of the finite 
element method for the numerical analysis of complex structures. This also represents an important step toward the develop-
ment of digital twins of engineering products. The proposed methodology significantly reduces the need for physical testing 
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and greatly improves the accuracy of equipment performance prediction. The work advances modern and innovative ap-
proaches to the study, design, and reliability improvement of locomotive electrical equipment, making it highly relevant for 
modern locomotive engineering and opening up new opportunities for integrating numerical simulation into the design and 
operational practices of traction rolling stock. 
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Введение 

Совершенствование работы локомотив-
ного комплекса тесно связано с реализацией 
Стратегии развития холдинга ОАО «РЖД» до 
2030 г., основной целью которой является пе-
реход на новый уровень предоставления услуг 
в области организации железнодорожных пере-
возок как грузов, так и пассажиров [1]. В соот-
ветствии с распоряжением Правительства Рос-
сийской Федерации от 28 апреля 2021 г. 
№ 1100-р был утвержден паспорт инвестици-
онного проекта «Модернизация железнодорож-
ной инфраструктуры Байкало-Амурской и 
Транссибирской железнодорожных магистра-
лей с целью повышения пропускных и провоз-
ных возможностей (второй этап)» [2]. Целевым 
показателем данного проекта является увели-
чение пропускной способности указанных ма-
гистралей, до 180 млн т в год. В частности, в 
2023 г. – до 173 млн т, затем в 2024 г. – до 
180 млн т, а к 2030 г. планируется достижение 
показателя 210 млн т в год. 

Современные требования к надежности 
и безопасности конструкций в области локо-
мотивостроения подчеркивают актуальность 
моделирования динамических характеристик 
различных элементов тягового подвижного 
состава (ТПС). 

В рамках четвертой промышленной рево-
люции, отмечающейся значительным скачком в 
цифровизации, внедрение новых технологий 
становится необходимым для повышения эф-
фективности и безопасности эксплуатации 
транспортных средств. Одним из ключевых 

трендов процесса является использование циф-
ровых двойников. Они представляют собой 
виртуальные модели реальных объектов, кото-
рые позволяют не только мониторить, но и про-
гнозировать их поведение в различных услови-
ях эксплуатации, остаточный ресурс и потен-
циальные отказы [3]. Это создаст основу для 
перехода к проактивным стратегиям управле-
ния состоянием ТПС, что особенно важно в 
условиях роста требований к надежности, ми-
нимизации количества отказов оборудования 
ТПС и выполнения целевых показателей. 

 
Актуальность 

Дефекты тягового двигателя являются 
одной из причин постановки локомотива на 
внеплановый ремонт, что влечет за собой зна-
чительные экономические потери. Около трети 
двигателей, поступающих в ремонт, имеют 
трещины остова в межоконном пространстве, 
что подтверждается анализом статистических 
данных по внеплановому ремонту с выявлени-
ем причин отказов тяговых электродвигателей 
(ТЭД) электровоза серии 2(3)ЭС5К [4–10]. 
Длительный простой локомотива на внеплано-
вом ремонте по указанной причине приводит к 
увеличению эксплуатируемого парка. 

Исследование причин и механизмов об-
разования трещин, а также разработка иннова-
ционных технологий для их предотвращения 
становится актуальной задачей как для научно-
го сообщества, так и для современного отече-
ственного локомотивостроения. 

 



ORIGINAL PAPER 
 

 

Modern technologies. System analysis. Modeling 2025. No. 1 (85). pp. 101–114 

ISSN 1813-9108 103
  

Новизна исследования заключается в 
разработке и практической реализации метода 
валидации упрощенной модели остова тягово-
го электродвигателя на основе сопоставления 
модального анализа и результатов физических 
испытаний. Работа демонстрирует допусти-
мость применения тонкостенных оболочечных 
моделей в инженерной практике с допустимой 
сходимостью на уровне 10 % по частоте ос-
новной моды. 

Целью работы является проведение вали-
дации математической модели остова тягового 
электродвигателя НБ-514Б методами модально-
го анализа и конечных элементов. 

Для исследования математической мо-
дели используется метод конечных элементов 
(МКЭ), конечно-элементный анализ, пред-
ставляющий собой численный метод прибли-
женного решения краевых (граничных) задач, 
имеющих место в технике и математической 
физике [11–14]. 

МКЭ широко применяется сегодня при мо-
делировании внутренних процессов, включаю-
щих процессы как механических нагрузок, так и 
колебаний. Этот метод позволяет детально анали-
зировать поведение конструкций под воздействи-
ем различных внешних факторов и физических 
процессов, возникающих в реальных условиях 
эксплуатации. В сочетании с современными вы-
числительными мощностями и программным 
обеспечением, МКЭ открывает возможности для 
оптимизации конструкций, увеличивая их рабо-
тоспособность, надежность и долговечность. 

Моделирование проводилось в программ-
ной среде «Логос». Для дискретизации трехмер-
ного пространства могут использоваться раз-
личные типы конечных элементов, наиболее 
простым из которых является четырехузловой 
тетраэдрический элемент [15–17]. Для оценки 
сходимости моделирования по частоте при мо-
делировании колебаний использовалась тетра-
эдэрная сетка с изменяемым шагом. 

Исследование сеточной сходимости при 
расчете собственных колебаний объекта опре-
деляет сходимость результатов, которая значи-
тельно зависит как от размеров ячеек сетки, так 
и от ее типа и шага. Выбор оптимального шага 
сетки важен для достижения достоверных дан-
ных, при этом необходимо избегать чрезмерной 
нагрузки на вычислительные ресурсы. Умень-
шение шага сетки значительно увеличивает 
требования к аппаратным ресурсам компьюте-

ра, используемого в процессе моделирования, 
что также требует оценки необходимости даль-
нейшего уменьшения сетки. 

Закрепление объекта математической мо-
дели в пространстве выполнено с помощью 
функции «Constraints» (ограничения). Эта 
функция позволяет установить фиксированные 
точки или границы, которые не подвержены 
перемещению, что обеспечивает стабильность 
и надежность результатов моделирования. При 
анализе собственных колебаний важно учиты-
вать, что колебательные процессы в различных 
системах зависят от условий, в которых они 
функционируют. При использовании функции 
«Constraints» задаются жесткие связи для опре-
деленных узлов или элементов модели, фикси-
руя их в заданных координатах. 

Остов ТЭД НБ-514Б и его модификации 
электровозов 2,3ЭС5К [18] и ВЛ85 [19] имеет 
достаточно сложную конфигурацию с отвер-
стиями нестандартной формы, что затрудняет 
аналитическое описание, поскольку обычно не 
существует точного аналитического решения, 
описывающего колебания такого объекта. По-
этому принято решение для исследования 
упростить остов ТЭД и представить его в виде 
тонкой оболочки с сохранением его геометри-
ческой формы и размеров. 

Критериями корректности моделирова-
ния колебаний могут служить совпадения соб-
ственных частот колебаний исследуемого объ-
екта с применением модального способа [3]. 

 
Исследование сходимости математической 

модели и эксперементальных данных 

Модальные испытания представляют со-
бой процесс экспериментального определения 
параметров динамического поведения кон-
струкции: частот собственных колебаний, ко-
эффициентов демпфирования и форм колеба-
ний [17]. Каждая конструкция обладает набо-
ром таких устойчивых форм колебаний (мод), 
которые определяют ее динамическое поведе-
ние. Задача модальных испытаний – найти этот 
набор мод, который адекватно описывает ди-
намику конструкции. 

Основной принцип получения модальных 
параметров: любая вынужденная динамическая 
деформация конструкции может быть представ-
лена в виде взвешенной суммы мод, где каждая 
мода может быть представлена в виде модели 
системы с одной степенью свободы. Уравнения 
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движения системы со многими степенями 
свободы, записанные в матричной форме 
уравнений равновесия, имеют вид: 

          PuKuCuM   ,        (1) 

где [M] – матрица масс конструкции; [С] – мат-
рица демпфирования; [K] – матрица жесткости; 
{P} – известный вектор внешней нагрузки, за-
висящий от времени; {u} – неизвестный вектор 
перемещений узлов конечно-элементной моде-
ли, зависящий от времени [14, 16]. 

Математически система (1) представляет 
собой систему линейных дифференцианльных 
уравнений второго порядка. В момент времени 
t = 0 определены начальные условия – {u0} и 
 

0u . Векторы ускорений и скоростей –  u  и 
 u  – вычисляются в процессе численного 
интегрирования системы вместе с вектором {u}. 

При изменении модуля упругости мате-
риала собственные частоты будут другими, а 
собственные формы колебаний останутся теми 
же. Если изменить граничные условия, то из-
менятся и частоты, и формы колебаний. 

Дифференциальное уравнение колебаний 
в матричном виде без учета затухания 
запишется как 

      0 uKuM  .            (2) 

Решение уравнения (2), соответствующее 
собственной форме колебаний {φ}, может быть 
записано в форме: 

{u} = {φ} ∙ sin ω(t – t0),         (3) 
где {φ} – вектор порядка n; t0 – начальная фаза; 
ω – угловая частота колебаний. 

Подставляя (3) в (2) получим нелинейное 
уравнение общей проблемы собственных 
значений: 

([K] – ω2[M]{φ}) = 0,       (4) 
из решения которого может быть определена 
собственная форма {φ} и угловая частота ω. 

Возможны два варианта решения (4): 
1. |[K] – ω2[M]{φ}| ≠ 0. Тогда решением 

является {φ} = 0, что не дает никакой полезной 
информации с физической точки зрения, 
поскольку представляет собой вариант 
отсутствия движения. 

2. Определитель выражения в скобках 
равен нулю: 

|[K] – ω2[M]{φ}| = 0.     (5) 

Уравнения (5) имеет n корней λi = 2

i
 . 

Числа λi называются собственными значениями 
системы (4). 

Нетривиальные решения {φ} ≠ 0 
получаются из уравнений: 

([K] – λi[M]{φi}) = 0 (i = 1, … , n). (6) 
При выполении условия (5) по крайней 

мере одно из уравнений системы (6) является 
следствием остальных, поэтому каждому 
значению λi соответсвует определенное 
соотношение между амплитудами φik. Иными 
словами, все амплитуды вектора могут быть 
выражены через одну из них. Соотношения 
между амплитудами φik определяют i-ю 
собственную форму колебаний. Итак, проблема 
собственных значений имеет n-собственных 
решений   

1

2

1 ,  ,   
2

2

2 ,  , … ,   
nn

 ,
2 . 

Из уравнения (3) следует, что все степени 
свободы в процессе колебания с собственной 
частотой ωi совершают синхронное движение. 
Таким образом, конфигурация конструкции не 
изменяет своей базовой формы, а меняются 
только амплитуды. 

Для конструкций, модели которых имеют 
несколько степеней свободы, кроме собствен-
ных частот, имеет смысл определения соб-
ственных форм колебаний. Собственные часто-
ты конструкции – это частоты, с которыми кон-
струкция стремится колебаться, если ее выве-
сти из состояния покоя. Форма деформации 
конструкции при колебании с собственной ча-
стотой называется собственной формой, или 
нормальной модой, или модальной формой. 
Каждая собственная форма ассоциируется с 
определенной собственной частотой. 

Проведение валидации созданной матема-
тической модели остова ТЭД НБ-514Б является 
сложной задачей. Для этого необходимо прове-
сти аналогичные испытания остова ТЭД на фи-
зической модели. Однако для того, чтобы под-
твердить, что программная среда «Логос» спо-
собна производить расчеты с допустимой по-
грешностью, сопоставимой с результатами за-
меров на физической модели, авторами выпол-
нено физическое моделирование частот соб-
ственных колебаний двух металлических ци-
линдров емкостью 60 и 20 л. Для измерения соб-
ственных частот применялся вычислительный 
комплекс фирмы «Мера», состоящий из крейта 
MIC-036 [20] и измерительной платы MC-201, 
способной измерять сигнал. Частота дискрети-
зации была выбрана 14,4 кГц. Также использо-
вался трехкоординатный датчик вибрации 
AP2038-10 [21] фирмы «Глобалтест» и согласу-
ющее устройство AG01-B. Принцип действия 
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датчика основан на генерации электрического 
сигнала, пропорционального воздействующему 
ускорению. Крепление датчика на объекте осу-
ществлялось с помощью изолирующего магнита 
AM05. Полоса пропускания сигнала виброуско-
рения при таком способе крепления оценивалась 
не менее 2,5 кГц, что вполне достаточно для да-
лее описываемых результатов. 

При проведении эксперимента для воз-
буждения конструкции использовались еди-
ничные удары, физически моделирующие дель-
та-функцию и имеющие математически «бе-
лый» спектр [22]. Удары производились обре-
зиненным молотком для исключения высокоча-
стотного дребезга. Применение ударного мо-
лотка во время проведения испытаний приво-
дило к импульсному возбуждению конструк-
ции, при котором она начинает колебаться с 
затухающей во времени амплитудой. В этом 
случае спектр колебаний зависит только от ме-
ста удара и возбуждаемых мод. Амплитудный 
спектр просто пропорционален силе удара. Да-
лее аналогичные резервуары смоделированы в 
«Логос» для сравнения их собственных частот с 
результатами физического моделирования. 

Геометрические размеры, места ударов и 
места закрепления при эксперименте и модели-
ровании цилиндрических резервуаров объемом 
60 и 20 л показаны на рис. 1 и 2. Заданные па-
раметры материала цилиндрического резервуа-

ра при моделировании представлены на рис. 3. 
Заданный анализ расчета для моделирования 
собственных колебаний представлен на рис. 4. 

Спектр зафиксированных собственных 
колебаний после ударов по трем координатам 
приведен на рис. 6. Из него видно, что колеба-
ние первой моды в эксперименте имеет часто-
ту 295 Гц. 

Полученные моды колебаний цилиндри-
ческого резервуара при разных сетках пред-
ставлены на рис. 5. Видно, что при уменьшении 
шага сетки вид колебаний не изменяется, а ча-
стота колебаний стремится к эксперименталь-
ной частоте первой гармоники, при этом ошиб-
ка определения частоты моды составила около 
10 %. Расчет абсолютной погрешности произ-
водился по формуле (7): 

        ΔA = Ax – A                              (7) 
где Ax – значения, полученные в ходе физиче-
ского эксперимента; A − значения, полученные 
в ходе математического моделирования: 

ΔA = 325 – 295 = 30 Гц. 
Расчет относительной погрешности произво-
дился по формуле (8): 

%100



A

A

A
; 

(8) 

%2,9%100
325

30


A
. 
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б 
Вибродатчик
Места удара
Направление удара 

 
в 

 
г 

Рис. 1. Измерение собственных колебаний на цилиндрическом резервуаре объемом 60 л: 
а – геометрические размеры; б – физическое моделирование; в – место удара при эксперименте; 

г – место закрепления при моделировании и эксперименте 
Fig. 1. Measurement of natural vibrations on a 60 L cylindrical tank: 

a – geometrical dimensions; б – physical modelling; в – place of impact in the experiment; 
г – place of fixation in the modelling and experiment 
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Рис. 2. Измерение собственных колебаний на цилиндрическом резервуаре объемом 20 л: 
а – геометрические размеры; б – физическое моделирование 

Fig. 2. Measurement of natural vibrations on a 20 L cylindrical tank: 
a – geometrical dimensions; б – physical modelling 

 

 
Рис. 3. Заданные параметры материала 
(сталь 3сп) цилиндрического резервуара 

Fig. 3. Set material parameters of the cylindrical tank’ 

 
Рис. 4. Заданный анализ расчета цилиндрического 

резервуара для моделирования собственных колебаний 
Fig. 4. Pre-defined analysis of ‘cylindrical tank’ 
calculation for modelling of natural vibrations 

 

 
Мода 1 

Частота 372 Гц (сетка 10 мм) 
Частота 368 Гц (сетка 5 мм) 
Частота 359 Гц (сетка 3 мм) 
Частота 325 Гц (сетка 2 мм) 

Мода 2 
Частота 419 Гц (сетка 10 мм) 
Частота 414 Гц (сетка 5 мм) 
Частота 380 Гц (сетка 3 мм) 
Частота 395 Гц (сетка 2 мм) 

Мода 3 
Частота 445 Гц (сетка 10 мм) 
Частота 446 Гц (сетка 5 мм) 
Частота 414 Гц (сетка 3 мм) 
Частота 411 Гц (сетка 2 мм) 
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Мода 4 

Частота 480 Гц (сетка 10 мм) 
Частота 482 Гц (сетка 5 мм) 
Частота 442 Гц (сетка 3 мм) 
Частота 436 Гц (сетка 2 мм) 

Мода 5 
Частота 498 Гц (сетка 10 мм) 
Частота 497 Гц (сетка 5 мм) 
Частота 497 Гц (сетка 3 мм) 
Частота 495 Гц (сетка 2 мм) 

Мода 6 
Частота 524 Гц (сетка 10 мм) 
Частота 511 Гц (сетка 5 мм) 
Частота 508 Гц (сетка 3 мм) 
Частота 502 Гц (сетка 2 мм) 

 
Рис. 5. Моды колебаний и их частоты для цилиндрического резервуара объемом 60 л при различных сетках 
Fig. 5. Modes of vibrations and their frequencies for a cylindrical tank with a volume of 60 L with different grids 

 
 

 
а 
 

 
б 

 

 
в 

 

Рис. 6. Спектр собственных колебаний цилиндрического резервуара объемом 60 л, зафиксированный 
экспериментально: 

а – удар сбоку; б – удар сверху; в – удар с торца 
Fig. 6. The spectrum of natural vibrations of a cylindrical tank with a volume of 60 L, recorded experimentally: 

a – side impact; б – top impact; в – end impact 
 

 

Спектр зафиксированных собственных 
колебаний после ударов в результате эксперимента 
приведен на рис. 7. Видно, что колебание первой 
моды в эксперименте имеет частоту 450 Гц. 

Смоделированные моды колебаний модели 
цилиндрического резервуара при разных сетках 

показаны на рис. 8. При уменьшении шага сетки 
вид колебаний не изменяется, а частота колебаний 
стремится к экспериментальной частоте первой 
гармоники, при этом ошибка расчета частоты 
первой моды составляет около 10 %. 
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Рис. 7. Спектр собственных колебаний цилиндрического резервурара объемом 20 л, зафиксированный 
экспериментально: 

а – удар сбоку; б – удар сверху; в – удар с торца 
Fig. 7. The spectrum of natural vibrations of a cylindrical tank with a volume of 20 L, recorded experimentally: 

a – side impact; б – top impact; в – end impact 
 

 
Мода 1  

Частота 669 Гц (сетка 10 мм) 
Частота 597 Гц (сетка 5 мм) 
Частота 534 Гц (сетка 3 мм) 
Частота 494 Гц (сетка 2 мм) 

Мода 2 
Частота 686 Гц (сетка 10 мм) 
Частота 652 Гц (сетка 5 мм) 
Частота 604 Гц (сетка 3 мм) 
Частота 557 Гц (сетка 2 мм) 

Мода 3 
Частота 688 Гц (сетка 10 мм) 
Частота 685 Гц (сетка 5 мм) 
Частота 685 Гц (сетка 3 мм) 
Частота 682 Гц (сетка 2 мм) 

  
Мода 4 

Частота 740 Гц (сетка 10 мм) 
Частота 728 Гц (сетка 5 мм) 
Частота 717 Гц (сетка 3 мм) 
Частота 711 Гц (сетка 2 мм) 

Мода 5 
Частота 769 Гц (сетка 10 мм) 
Частота 766 Гц (сетка 5 мм) 
Частота 765 Гц (сетка 3 мм) 
Частота 761 Гц (сетка 2 мм) 

Мода 6 
Частота 808 Гц (сетка 10 мм) 
Частота 793 Гц (сетка 5 мм) 
Частота 780 Гц (сетка 3 мм) 
Частота 775 Гц (сетка 2 мм) 

 
Рис. 8. Моды колебаний и их частоты для цилиндрического резервуара объемом 20 л при различных сетках 

Fig. 8. Modes of oscillations and their frequencies for a 20 L cylindrical tank at different meshes 
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МКЭ предполагает разбиение сложной 
геометрической области на конечное количе-
ство элементов, что позволяет упростить расчет 
сложных физических процессов. Однако при 
наложении сетки на сложные формы, такие как 
остов ТЭД НБ-514, возникает необходимость в 
тщательном выборе и упрощении геометрии. 

Сложные узлы и элементы на расчетной 
модели приводят к несоответствиям в наложе-
нии сетки, что, в свою очередь, вызывает кон-
центрацию напряжений и деформаций в пере-
ходных сопряжениях. Это отрицательно сказы-
вается на сходимости расчетов. Упрощение 
геометрии модели позволяет решить данную 
проблему, позволяя эффективно разбить мо-

дель на элементы с одинаковыми размерами и 
формой, что минимизирует погрешности вы-
числений и обеспечивает сходимость расчетов. 

Простая геометрическая форма матема-
тической модели остова ТЭД НБ-514 представ-
лена на рис. 9 в виде оболочки. Эксперимен-
тальное измерение собственных колебаний на 
остове ТЭД приведено на рис. 10. Параметры 
материала остова ТЭД НБ-514 при моделиро-
вании представлены на рис. 11, а заданный ана-
лиз расчета для моделирования собственных 
колебаний – на рис. 12. Полученный в резуль-
тате эксперимента спектр собственных колеба-
ний изображен на рис. 13, а моды колебаний и 
их частот при моделировании – на рис. 14. 

 
а 

Место удара

 
б 

Присоединение ТЭД к земле

Место удара

 
в 

Рис. 9. Остов тягового электродвигателя НБ-514: 
а – габаритные размеры; б – присоединение тягового электродвигателя к земле при моделировании; 

в – место удара при экспериментальном определении спектра собственных колебаний 
Fig. 9. Body of traction motor NB-514: 

a – overall dimensions; б – connection of the traction motor to the ground during modelling; 
в – impact point during experimental determination of the spectrum of natural vibrations 

 
1 2 3 4 5

 
Рис. 10. Измерение собственных колебаний на остове тягового электродвигателя НБ-514: 

1 – согласующее устройство AG01-8; 2 – измерительно-вычислительный комплекс MIC-036; 
3 – измерительная плата MC-201; 4 – датчик вибрации АР2038-10 с магнитом; 

5 – остов тягового электродвигателя НБ-514 
Fig. 10. Measurement of natural vibrations on the traction motor NB-514 base: 

1 – AG01-8 matching device; 2 – measuring-computing complex MIC-036; 3 – measuring board MC-201; 
4 – sensor vibration sensor AR2038-10; 5 – frame of NB-514 traction motor 
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Рис. 11. Заданные параметры материала остова (сталь 25л) тягового электродвигателя НБ-514 

Fig. 11. Set parameters of the NB-514 traction motor frame material 
 

 
Рис. 12. Заданный анализ расчета остова тягового элеткродвигателя для моделирования собственных колебаний 

Fig. 12. Defined analysis of traction motor frame calculation for modelling of natural vibrations 
 

 
 

Рис. 13. Cпектр собственных колебаний остова тягового электродвигателя 
Fig. 13. Spectrum of natural vibrations of the traction motor frame 
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Мода 1 
Частота 300 Гц (сетка 30 мм) 
Частота 280 Гц (сетка 15 мм) 
Частота 269 Гц (сетка 10 мм) 

Мода 2 
Частота 392 Гц (сетка 30 мм) 
Частота 370 Гц (сетка 15 мм) 
Частота 357 Гц (сетка 10 мм) 

Мода 3 
Частота 430 Гц (сетка 30 мм) 
Частота 400 Гц (сетка 15 мм) 
Частота 381 Гц (сетка 10 мм) 

 

  
Мода 4 

Частота 454 Гц (сетка 30 мм) 
Частота 432 Гц (сетка 15 мм) 
Частота 410 Гц (сетка 10 мм) 

Мода 5 
Частота 473 Гц (сетка 30 мм) 
Частота 438 Гц (сетка 15 мм) 
Частота 416 Гц (сетка 10 мм) 

Мода 6 
Частота 552 Гц (сетка 30 мм) 
Частота514 Гц (сетка 15 мм) 
Частота 486 Гц (сетка 10 мм) 

 

Рис. 14. Моды колебаний остова тягового электродвигателя НБ-514 
Fig. 14. Modes of vibrations of the frame of traction motor NB-514 

 

Из результатов, представленных на рис. 5, 
8, 14, видно, что при моделировании колебаний 
оболочки с уменьшением шага сетки погреш-
ность моделирования частоты колебаний 
уменьшается. Так, при шаге сетки примерно в 
3 раза меньшем, чем толщина оболочки, по-
грешность моделирования частоты колебаний 
первой моды достигает 10 %, что может рас-
сматриваться как технически обоснованный ре-
зультат, подтверждающий адекватность модели. 
Уменьшение шага сетки при моделировании 
частоты колебаний неизбежно приводит к про-
блеме вычислительных мощностей памяти на 
жестком диске компьютера. В дальнейшем 
представляется перспективным применение 
оболочечных и твердотельных гибридных эле-
ментов для повышения точности моделирования 
в условиях сложной геометрии. 

Данные результаты подчеркивают важ-
ность выбора оптимального шага сетки для 

адекватного моделирования, а также демон-
стрируют потенциал применения МКЭ для ана-
лиза других конструкций с аналогичными ха-
рактеристиками. 
 
Заключение 

В проведенной работе выполнен анализ 
моделирования собственных частот колеба-
ний оболочек с использованием МКЭ. Срав-
нение расчетных и экспериментальных дан-
ных показало, что при уменьшении шага сет-
ки до значений, составляющих примерно од-
ну треть минимальной толщины оболочки, 
достигается достаточная сходимость резуль-
татов с погрешностью не более 10 %. С опо-
рой на полученные результаты и погрешно-
сти, выявленные в ходе физического и мате-
матического моделирования, был разработан 
инструмент в программной среде, который 
позволяет переходить от натурных испытаний 
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к виртуальным. Это, как правило, характери-
зуется значительно меньшей трудоемкостью 
и позволяет за счет множества итераций на 
модели получать решения актуальных задач в 
эксплуатации, например, формирование тре-
щин в остовах ТЭД локомотивов и др. 

Результаты исследования имеют практи-
ческую значимость и подтверждаются данными 
моделирования: при использовании шага сетки, 
равного одной трети толщины стенки, погреш-
ность первой моды не превышает 10 % (напри-

мер, 295 Гц в эксперименте и 325 Гц в модели). 
Это позволяет переходить от физического те-
стирования к численному анализу, снижая за-
траты времени и ресурсов. 

Перспективы дальнейших исследований 
заключаются в разработке более высокоточных 
моделей, оптимизации алгоритмов моделиро-
вания, а также применении более производи-
тельных вычислительных систем. Эти меры 
позволят снизить погрешность и расширить 
границы применения численных методов. 
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