An energy criterion for estimating the wheel stability reserve from the rolling of the flange onto the railhead during the motion of a wheel set along a straight section

Authors

  • Maksim S. Gromakov The Russian University of Transport
  • Anatolii A. Tarmaev Irkutsk State Transport University
  • Sergei V. Bespal'ko The Russian University of Transport

Keywords:

traffic safety, safe speed, railcar, wheel set, wheel, derailment, the rolling of a wheel onto the railhead, energy approach

Abstract

In case of hunting, the lateral forces are created by pressing the wheels against the rails, which can lead to the wheel flange rolling onto the railhead and subsequent derailment. The derailment of the rolling stock poses a serious threat to traffic safety. The current standards for the calculation and design of railcars for 1520 mm gauge railways provide for checking the wheel stability from rolling onto the railhead. The minimum value of the safety factor of the wheel stability against derailment is taken as a criterion. The stability coefficient is determined based on the condition of the return of the wheel rolled onto the railhead to its original position under the action of the vertical force created by the weight of the railcar. In modern mechanics, most of the calculation methods are based on energy principles, which constitute the so-called "analytical mechanics" - an alternative to "vector (Newtonian) mechanics". A proposed method is to assess the stability of a wheel based on the condition of preventing the wheel flange from rolling onto the railhead by comparing the kinetic energy of the wheel set hunting with the work of the vertical and horizontal forces acting on the wheel set. The stability condition for the wheel is determined from the principle of preventing the wheel flange from rolling onto the railhead. The calculations of the variants of the movement of the railcar at different speeds were carried out based on the normative and proposed methods. A comparison of the critical (permissible) speed of movement was made according to the above methods. Comparative analysis showed that when assessing stability by the energy criterion, the permissible speed of the railcar is higher than with the force method. It may allow increasing the estimated speed tolerance of the designed railcar with further detailed analysis and assessment of all the dynamic factors of the railcar.

References

Клименко И.В. Развитие теоретических основ и методов оценки и повышения безопасности движения подвижного состава железных дорог : дис. … д-ра техн. наук. Днепропетровск, 2015. 284 с.

Evans A.W. Fatal train accidents on Europe’s railways: 1980–2009. Accident Analysis and Prevention // National Library of Medicine. 2011. 43. P. 391–401. DOI: 10.1016/j.aap.2010.09.009.

Kumar K.A. Indian Railways: Recent Trends in Control Accidents and Safety Measures for Passengers // East Asian Journal of Business Economics. 2014. Vol. 2, № 4. Р. 48–55.

Арутюнян А.Р., Арутюнян Р.А. Критерий усталости, основанный на результатах исследований по скрытой энергии деформации // Вестн. Санкт-Петербур. ун-та. Сер.: Математика. Механика. Астрономия. 2010. № 3. С. 80–88.

Боронахин А.М., Гупалов В.И., Филипеня Н.С. Инерциальные методы и средства диагностики рельсового пути // Гироскопия и навигация. 2006. № 4. С. 102.

Влахова А.В. Моделирование движения железнодорожного экипажа при вкатывании гребня колеса на рельс с использованием подхода Дирака // Вестн. Моск. ун-та. Сер.: Математика. Механика. 2014. № 3. С. 68–72.

Ахмадеева А.А., Гозбенко В.Е. Рациональное задание числа степеней свободы динамической модели грузового вагона // Системы. Методы. Технологии. 2011. № 4 (12). С. 25–28.

Курбацкий Е.Н., Нгуен Ч.Т. Определение критических скоростей и критических сил при движении постоянной силы по балкам на упругом основании // Изв. высш. учеб. заведений. Строительство. 2014. № 5. С. 109–117.

Мугинштейн Л.А., Ромен Ю.С. Влияние продольных сил на опасность сходов порожних вагонов в поездах // Вестник ВНИИЖТ. 2011. № 3. С. 3–6.

Reducing the threat of in-transit derailments involving dangerous goods through effective placement along the train consist / M. Bagheri, F. Saccomanno, Sh. Chenouri et al. // Accident Analysis & Prevention. 2011. Vol. 43, is. 3. Р. 613–620. DOI 10.1016/j.aap.2010.09.008.

Eom B., Lee H.S. Assessment of running safety of railway vehicles using multibody dynamics // International Journal of Precision Engineering and Manufacturing volume. 2010. 11, 315-320. DOI: 10.1007/s12541-010-0036-x.

Gilchrist A.O., Brickle B.V. A re-examination of the proneness to derailment of a railway wheelset // Journal of Mechanical Engineering Science. 1976. Vol. 18, № 3. Р. 131–141.

Ham Y., Lee D., Kwon S. et al. Continuous measurement of interaction forces between wheel and rail // International Journal of Precision Engineering and Manufacturing volume. 2009. Vol. 10. Р. 35–39. DOI: 10.1007/s12541-009-0006-3.

Theoretical cross-wind speed against rail vehicle derailment considering the cross-running wind of trains and the dynamic wheel-rail effects / M.S. Kim, G.Y. Kim, H.T. Kim et al. // Journal of Mechanical Science and Technology. 2016. Т. 30, is. 8. Р. 3487–3498.

Koo J. A new derailment coefficient considering dynamic and geometrical effects of a single wheelset // Journal of Mechanical Science and Technology. 2014. Т. 28, is. 9. Р. 3483–3498.

Determing the causes of rolling stock derailment from the track using modern research methods / A. Kuzyshin, A. Batig, J. Sobolevska et al. // MATEC Web of Conferences. 2009. 294, 03004. DOI 10.1051/matecconf/201929403004.

Liu X., Saat M.R., Barkan Ch. Freight-train derailment rates for railroad safety and risk analysis // Accident Analysis & Prevention. 2017. Vol. 98. Р. 1-9. DOI 10.1016/j.aap.2016.09.012.

Nadal M. J. Locomotive á Vapeur. Paris : Collection encyclopédie scintifique ; bibliotéque de mécanique appliquée et génie, 1908. Vol. 186.

Weinstock H. Wheel Climb Derailment Criteria for Evaluation of Rail Vehicle Safety // ASME Winter Annual Meeting. 1984. paper no. 84-WA/RT-1. Р. 1–7.

Нормы для расчета и проектирования вагонов железных дорог МПС колеи 1520 мм (несамоходных). М. : ГосНИИВ-ВНИИЖТ, 1996. 317 с.

Вершинский С.В., Данилов В.Н., Хусидов В. Д. Динамика вагона. М. : АСПОЛ, 1991. 360 c.

Смольянинов А.В., Якупов А.Р. Сравнительный анализ методик расчета устойчивости колесной пары от схода с рельсов // Транспорт Урала. 2017. № 1. С. 48–54. DOI 10.20291/1815-9400-2016-2-48-54.

Котуранов В.Н., Козлов М.П. Технологическая последовательность экспертных оценок рабочих качеств универсального грузового вагона (на примере цистерны 15-1443) : учеб. пособие. М. : МИИТ, 2013. 147 с.

Published

2021-04-29

How to Cite

Громаков, М. С., Тармаев, А. А., & Беспалько, С. В. (2021). An energy criterion for estimating the wheel stability reserve from the rolling of the flange onto the railhead during the motion of a wheel set along a straight section. Modern Technologies. System Analysis. Modeling, (1(69), 104-111. Retrieved from https://ojs.irgups.ru/index.php/stsam/article/view/111