LINEAR CLASSIFIER IN THE PROBLEMS OF AUTHENTICATION OF THE PERSON FROM HAND-WRITTEN CHARACTERS
Keywords:
authentication, linear programming, machine learning, methods of classification, recognition of hand-written characters, Python programming languageAbstract
This article discusses the method of a simple linear classifier for solving the problem of identifying the performers of handwritten characters. An urgent problem is the creation of a fast and reliable classification model that allows you to optimally separate different handwriting: a reference signature from a fake one. The article presents the results of a constructed model that provides an analysis of handwriting samples of two persons. The simulation was carried out using the Python programming language.
References
Griva I., Nash S.G., Sofer A. Linear and Nonlinear Optimization. SIAM. – 2009. – 764 p.
Cristianini N., Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press. – 2000. – 204 p.
Shalev-Shwartz S., Ben-David S. Understanding Machine Learning: From Theory to Algo-rithms. Cambridge University Press. – 2014. – 410 p.
Schölkopf B., Smola A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. The MIT Press. – 2001. – 644 p.
Harrington P. Machine Learning in Action. Manning. – 2012. – 384 p.
Nefedov A. Support Vector Machines: A Simple Tutorial, 2016. – 35 p.
Гефан Г.Д., Иванов В.Б. Метод опорных векторов и альтернативный ему простой линейный классификатор // Информационные технологии и проблемы математического моделирования сложных систем. – Иркутск : ИрГУПС, 2012. – Вып. 10. – С. 84-94.
Hill C. Learning Scientific Programming with Python. Cambridge University Press. – 2020. – 204 p.