Microprocessor protection terminals of traction substations: Study of connection variants

Authors

  • Pavel S. Pinchukov Far Eastern State Transport University

Keywords:

traction substation, microprocessor protection and automation devices, digital current transformer, mean time between failures, survival function

Abstract

A wide range of microprocessor protection and automation devices in various designs is used in modern railway electric power industry. The traditional circuits for connecting microprocessor devices are being replaced by new circuits, the reliability of which must be numerically assessed by step-by-step analysis and assessment of options for the occurrence of functional failures. The relevance of the study is based on the total modernization of railway energetics through the implementation of information technologies in the technological process control systems and the advanced extension of the use of digital technologies. The paper studies numerical indicators of reliability of microprocessor relay protection devices at traction substations. It also analyzes current trends in the digitalization of railway traction substations using microprocessor protection and automation devices. Since the database of indicators of the reliability of digital protection and automation systems in the railway power industry of the Russian Federation is currently not available the connection diagrams and technological design requirements for electric power digital substations were taken as the basis. The reliability indicators were calculated for traction substations of alternating current of railway transport. The results made it possible to compare new and existing (traditional) schemes in terms of reliability. It was revealed that the reliability indices of the new circuits are not higher than in the traditional one, which is explained by the presence of non-redundant elements in the new circuits, reducing the resulting reliability indices. Step-by-step examples of compiling topological equivalent circuits for reliability are given. Modeling and analysis of fault’s trees are carried out, taking into account the reliability indicators of elements with an example of the traction substation. The need to create in the near future a database of new digital and connecting equipment with an indication of the quantitative values of the reliability indicators of devices and complexes of relay protection and automation is emphasized.

References

Об утверждении приоритетных направлений развития науки, технологий и техники в Российской Федерации и перечня критических технологий Российской Федерации : указ Президента РФ от 7 июля 2011 г. № 89 с изм. и доп. от 16.12.2015.

Стратегия развития холдинга ОАО «РЖД» до 2030 года // ОАО «РЖД» : сайт. URL: https://company.rzd.ru/ru/9353/page/105104?id=804 (дата обращения 22.09.2021).

Ливинский П.А., Гвоздев Д.Б. Инновационная энергосистема России в 2050 году // Энергетическая политика. 2017. № 6. С. 16–21.

Galeeva G. Digital transformation of the energy industry in the Russian economy // Sustainable Energy and Power Engineering 2021 (SUSE-2021) : E3S Web Conf. 2021. Vol. 288 : international Symposium. DOI: https://doi.org/10.1051/e3sconf/202128801065.

Бойченко О.В., Дячук В.С. Построение информационной модели цифровой подстанции на основе стандарта МЭК 61850 // Междунар. науч.-техн. журн. 2016. № 4-2 (46). С. 39–42.

Булатов Ю.Н., Крюков А.В., Куцый А.П. Мультиагентные технологии управления в системах электроснабжения магистральных железных дорог // Системы. Методы. Технологии. 2018. № 1 (37). С. 56–65.

Закарюкин В.П., Крюков А.В., Черепанов А.В. Интеллектуальные технологии управления качеством электроэнергии. Иркутск : Изд-во ИрНИТУ, 2015. 218 с.

Zakaryukin V.P., Kryukov A.V. Intelligent Traction Power Supply System // The power grid of the future : proceeding № 2. Magdeburg : Otto–von–Guericke University Magdeburg, 2013. P. 44–48.

Liu N., Panteli M., Crossley P.A. Reliability Evaluation of a Substation Automation System Communication Network Based on IEC 61850 // 12th IET International Conference on Developments in Power System Protection (DPSP 2014), 2014, pp. 1–6. DOI: 10.1049/cp.2014.0057.

Агафонов А.И., Бростилова Т.Ю., Джазовский Н.Б. Современная релейная защита и автоматика электроэнергетических систем. Пенза : Изд-во ПГУ, 2017. 296 с.

Жуков А.В. Обобщение мировых тенденций развития техники и технологий электроэнергетики в области работы ИК В5 «Релейная защита и автоматика» релейной защиты и автоматики энергосистем (по итогам 47-ой сессии СИГРЭ 2018 г.) // CIGRE : сайт. URL: http://cigre.ru/47/pdf/B5_%D0%96%D1%83%D0%BA%D0%BE%D0%B2.pdf (дата обращения 22.09.2021).

Tutorial on Networking for Digital Substations / R. Hunt, M. Zapella, C. Pimentel et al. // 72nd Conference for Protective Relay Engineers (CPRE). USA. TX. College Station, 2019. P. 1–15. DOI: 10.1109/CPRE.2019.8765874.

On the mathematical simulation of digital substation technological processes / V.I. Dubrov, R.G. Oganyan, N.D Narakidze et. al // Journal of Engineering and Applied Sciences. 2017. Т. 12. № 2. Р. 276–282.

Khrennikov A.Yu., Aleksandrov N.M. Approaches and experience in testing of digital substation primary equipment and relay protection // Elektroenergetika 2019 : рroceedings of the 10th International Scientific Symposium on Electrical Power Engineering. Slovakia : Technical University of Kosice, 2019. Р. 280–283.

Methodology for reliability indices determination in electric power substation / J.D. Barbosa, R. Santos, J.F. Romero et al. // IEEE Latin America Transactions. 2018. № 16. Р. 1959–1968. DOI: 10.1109/TLA.2018.8447363.

Макашёва С.И., Пинчуков П.С. Расчет показателей надежности цифровой подстанции // Вестник ЮУрГУ. Сер. Энергетика. 2019. Т. 19. № 4. С. 41–51. DOI: 10.14529/power190405.

Pinchukov P.S, Makasheva S.I. Estimation of Digital Substation Reliability Indices // Advances in intelligent systems and computing : VIII International scientific Siberian Transport Forum. 2020. Vol 1. Т. 1115. P. 3–14. DOI: 10.1007/978-3-030-37916-2_1.

Pinchukov P., Makasheva S. Improving methods for reliability assessment of electric power systems // Advances in Intelligent Systems and Computing. 2017. Vol. 692. Р. 162–169.

Published

2021-12-30

How to Cite

Пинчуков, П. С. (2021). Microprocessor protection terminals of traction substations: Study of connection variants. Modern Technologies. System Analysis. Modeling, (4(72), 87-95. Retrieved from http://ojs.irgups.ru/index.php/stsam/article/view/401