GAUSSIAN MODELS OF THE HUMAN VOICE IN THE PROBLEMS OF VERIFICATION AND IDENTIFICATION OF THE PERSON FROM SPEECH SIGNALS

Authors

  • Grigory Gefan Irkutsk State University of Railways
  • Валерия Ринатовна Масалимова Иркутский государственный университет путей сообщения
  • Igor Nasonov Irkutsk State University of Railways

Keywords:

verification, identification, mathematical model of voice, speech vectors, training and test kits

Abstract

At this stage of development of data protection technologies, additional protection is being implemented through the analysis of human biometric data. One of the urgent problems in the field of information protection is the introduction of voice recognition systems. These systems make it possible to identify a person's personality by a set of unique characteristics of the voice.

In this paper, an algorithm based on a Gaussian model of the human voice was created and tested. The model is implemented in the Python programming language. This algorithm can later be used as a tool for verification and identification of a person by the speaker's speech signals.

Test conditional vectors from different sets were compared with the reference model. The desired result was confirmed: the more significant the differences between the test vector and the training (reference) model, the lower the similarity coefficient takes. This result suggests that the computational algorithm has been successfully tested and can be used for further tests with real speech vectors.

Author Biographies

Grigory Gefan, Irkutsk State University of Railways

Gefan Grigory Davydovich - Associate Professor of the Department of Mathematics, Irkutsk State University of Railway Transport, Irkutsk

Igor Nasonov, Irkutsk State University of Railways

Nasonov Igor Pavlovich - student, specialty "Safety of automated systems", Irkutsk State University of Railways, Irkutsk

References

Г.Д. Гефан, В.Б. Иванов, Авторегрессионные векторные модели и их применение в задачах идентификации личности по речевым сигналам // Информационные технологии и проблемы математического моделирования сложных систем. Иркутск: ИИТМ ИрГУПС, 2010. – Вып. 8, с. 74-81

Г.Д. Гефан, В.Б. Иванов, Математическое моделирование систем верификации и идентификации личности по речевым сигналам // Информационные системы контроля и управления в промышленности и на транспорте. Иркутск: ИрГУПС, 2010. – Вып. 17, с. 24-31

Picone J. Signal modeling techniques in speech recognition – 1993 [Электронный ресурс]. – Режим доступа: http://aprodeus.narod.ru

Bimbot F., Magrin-Chagnolleau I., Mathan L. Second Order Statistical Measures For Text Independent Speaker Identification // Speech Communica-tion. – 1995. – 17(1-2). – P. 177-192.

Burges C.J.C. A tutorial on Support Vector Machines for pattern recog-nition // Data Mining and Knowledge Discovery. – 1998. – V. 2. – No 2. – P. 1-47.

Montacie C., Le Floch J.-L. AR-vector models for free-text speaker recognition // Proceeding of ICSLP. – 1992. – V.1. – P. 611-614.

Rabiner L.R. A tutorial on hidden Markov models and selected applica-tions in speech recognition // Proc. IEEE. – 1989. – 77(2). – P. 257-286.

Published

2023-11-01

How to Cite

Гефан, Г. Д., Масалимова, В. Р., & Насонов, И. П. (2023). GAUSSIAN MODELS OF THE HUMAN VOICE IN THE PROBLEMS OF VERIFICATION AND IDENTIFICATION OF THE PERSON FROM SPEECH SIGNALS. The Electronic Scientific Journal "Young Science of Siberia", (3(21). Retrieved from https://ojs.irgups.ru/index.php/mns/article/view/1333

Issue

Section

Physical and mathematical Sciences

Most read articles by the same author(s)