MODELING TRANSPORT DEMAND BASED ON MOBILE COMMUNICATION DATA

Authors

  • Olga Anatolyevna Lebedeva Angarsk State Technical University

Keywords:

transport modeling, demand, matrix, mobile data

Abstract

Using the data of mobile operators to improve the estimate of the prior matrix can affect the structure and improve the quality of the posterior matrix when predicting traffic flows. Such data are important for improving the quality of the results obtained using transport models, since they can provide much larger amounts of information and continuous measurements. They contain information about the connection of a specific device with a cell tower, which makes it possible to determine the location of the subscriber. Time series analysis of these devices allows you to reconstruct the route and understand the daily dynamics of movement. Data from mobile devices can be used to obtain various indicators: the number of trips, work schedule, travel time.

However, both data sources (mobile operators and travel surveys) have strengths and weaknesses that can lead to modeling errors. Comparison of these data sources gives an idea of the reliability of the correspondence matrix, that is, the combination of the two types of data will improve the quality of the prior matrix for transport modeling. The study combined survey-based travel time distributions and mobile network data to improve the structure of the traditional prior matrix. For the study, a multimodal transport model is used, which includes a large number of transport zones, taking into account various types of road transport (cars and trucks, public transport), using a detailed network of the region. For a correct assessment of trips arriving from outside the region, as well as for the assessment of through traffic, it is necessary to include the network and zones outside the region with less detail. A priori matrix of the region is constructed using demand models and characteristics of riders. Calibration of the synthetic a priori matrix of correspondences by subaccounts of traffic flows gives the posterior matrix. The model takes into account the purpose of equilibrium, based on the functions of the transit time of a section of the road network and traffic congestion.

References

L.J.J. Wismans, E.C. van Berkum, and M.C.J. Bliemer, “Modelling Externalities Using Dy-namic Traffic Assignment Models: A Review,” Transport Reviews 31: 4 (2011) 521–545, doi:10.1080/ 01441647.2010.544856.

Z. Zhao, S.-L. Shaw, Y. Xu, F. Lu, J. Chen, and L. Yin, “Understanding the Bias of Call De-tail Records in Human Mobility Research,” International Journal of Geographical Information Science 30: 9 (2016) 1738–1762

Шаров М.И., Лебедева О.А. Влияние транспортного зонирования на функциониро-вание маршрутной сети города// Современные технологии. Системный анализ. Моделиро-вание. 2019. № 2 (62). С. 196-202.

Гозбенко В.Е., Крипак М.Н., Лебедева О.А., Каргапольцев С.К. Повышение эффек-тивности функционирования транспортной сети городского пассажирского транспорта пу-тем применения автоматизации модели выбора оптимального подвижного состава // Совре-менные технологии. Системный анализ. Моделирование. 2017. № 2 (54). С. 203-208.

Крипак М.Н., Лебедева О.А. Оценка состояния улично-дорожной сети крупного го-рода// Современные технологии. Системный анализ. Моделирование. 2016. № 3 (51). С. 171-174.

Полтавская Ю.О., Крипак М.Н., Гозбенко В.Е. Оценка условий движения транс-портных потоков с применением геоинформационных технологий Современные техноло-гии. Системный анализ. Моделирование. 2016. № 1 (49). С. 155-161.

Published

2022-01-12

How to Cite

Лебедева, О. А. (2022). MODELING TRANSPORT DEMAND BASED ON MOBILE COMMUNICATION DATA. The Electronic Scientific Journal "Young Science of Siberia", (3(13). Retrieved from https://ojs.irgups.ru/index.php/mns/article/view/229

Issue

Section

Management of railway transport