Computer simulation of load swaying while telescoping

Authors

  • Aleksandr A. Reutov Bryansk State Technical University

Keywords:

telescopic boom, dynamic model, movement control, load sway, “Universal mechanism”

Abstract

The article presents a computer dynamic model of swaying a load on a rope with various controls by extending the sections of the telescopic boom of the crane. The purpose of the work is to analyze the possibilities of reducing the swaying of the load with various controls by extending sections of the telescopic boom of the crane. The method of carrying out the work is computer simulation of the movement of a telescopic boom with a load, taking into account the mechanical characteristics of ropes, sections and their contact interaction using the “Universal Mechanism” software. The simulation of the movement of a telescopic boom with a load with one-stage and three-stage control modes, with the dependence of the extension speed on time and movement, has been carried out. The simulation has shown that the three-stage motion control mode with variable acceleration better reduces the load oscillations in comparison with the other two considered modes, although the maximum values of the deflection and skew angle of the load depend more on the acceleration of the sections movement than on the law of motion. Using the dependency of extension speed on displacement is less effective than using the time dependency and slows down the movement of the sections. The positioning error is conditioned by the difference between the actual section extension speed from the specified one. Positioning error is 0,8–1,3 % and can be reduced by adjusting the hydraulic cylinder force values. It is advisable to use a computer model and the established patterns of loads telescoping when designing assembly operations carried out by cranes with telescopic booms.

References

An anti-swing and positioning controller for overhead cranes based on multi-sliding mode method / W. Xu, B. Liu, J.Chu et al. // Advanced Materials Research Vol. 468–471. Р. 328–334. DOI: 10.4028/www.scientific.net/AMR.468-471.328.

Sorensen K., Singhose W., Dickerson S.A controller enabling precise positioning and sway reduction in bridge and gantry cranes // Control Eng. Pract. 2007. Vol. 15. P. 825–837. DOI:10.1016/j.conengprac.2006.03.005.

Корытов М.С., Щербаков В.С., Титенко В.В. Аналитическое решение задачи разгона груза мостовым краном с постоянным ускорением при гашении колебаний грузового каната // Динамика систем, механизмов и машин. 2017. Т. 5, № 4. С. 132–135. DOI: 10.25206/2310-9793-2017-5-4-132-136.

Singhose W., Kim D., Kenison M. Input shaping control of double-pendulum bridge crane oscillations // Journal of Dynamic Systems, Measurement, and Control Control. 2008. Vol. 130. DOI:10.1115/1.2907363.

Vaughan J., Kim D., Singhose W. Control of tower cranes with double-pendulum payload dynamics // IEEE Trans. Control Syst. Technol. 2010. Vol. 18. P. 1345–1358. DOI:10.1109/TCST.2010.2040178.

Saeidi H., Naraghi M., Raie A. A neural network selftuner based on input shapers behavior for antisway system of gantry cranes // Journal of Vibration and Control. 2013. Vol. 19. P. 1936–1949. DOI: 10.1177/1077546312453065.

Программа ввода данных. Руководство пользователя. URL: http://www.universalmechanism.com/download/80/rus/03_um_data_input_program.pdf (дата обращения 21.12.2020).

Шестеров Ю.В. Моделирование выдвижения секций телескопической стрелы крана // Инновационное развитие подъемно-транспортной техники : материалы Всерос. науч.-практ. конф. Брянск : Изд-во Брян. гос. техн. ун-та, 2019. С. 55–60.

Кран автомобильный КС-55713-5К-1. Руководство по эксплуатации КС-55713-5К-1.00.000 РЭ. URL: http://oaokaz.ru/catalog/avtokran/KS-55713-5K-1 (дата обращения 21.08.2020).

Реутов А.А. Динамическая модель полиспаста механизма подъема груза // Современные инструментальные системы, информационные технологии и инновации : сб. науч. тр. XII Междунар. науч.-практ. конф. Курск : Юго-Запад. гос. ун-т, 2015. Т. 3. С. 391–394.

Tuan L.A., Soon-Geul L., Moon S.C. Partial feedback linearization and sliding mode techniques for 2D crane control // Transactions of the Institute of Measurement and Control covers applications in instrumentation and control. 2014. Vol. 36. P. 78–87. DOI: 10.1177/0142331213492369.

Pai M.C. Closed-loop input shaping control of vibration in flexible structures via adaptive sliding mode control // Shock and Vibration. 2012. Vol. 19. P. 221–233. DOI: 10.1155/2012/803479

An optimal performance control scheme for a 3D gantry crane / M.J. Maghsoudi, Z. Mohamed, A.R. Husain et al. // Me-chanical Systems and Signal Processing. 2016. Vol. 66–67. P. 756–768. DOI: 10.1016/j.ymssp.2015.05.020.

, Yang T., Singhose W. Combined input shaping and feedback control for double-pendulum systems / R. Mar, A. Goy-al, V. Nguyen et al. // Mechanical Systems and Signal Processing. 2017. Vol. 85. P. 267–277. DOI: 10.1016/j.ymssp.2016.08.012.

Duc V., Trong K. Combination of input shaping and radial spring-damper to reduce tridirectional vibration of crane payload // Mechanical Systems and Signal Processing. 2019. Vol. 116. P. 310–321. DOI: 10.1016/j.ymssp.2018.06.056.

Published

2021-04-29

How to Cite

Реутов, А. А. . (2021). Computer simulation of load swaying while telescoping. Modern Technologies. System Analysis. Modeling, (1(69), 24-32. Retrieved from https://ojs.irgups.ru/index.php/stsam/article/view/102

Issue

Section

Machine construction and theoretical engineering