Analysis of the reverse traction current influence on the track circuits operation

Authors

  • Pavel S. Pinchukov Far Eastern State Transport University
  • Svetlana I. Makasheva Far Eastern State Transport University

Keywords:

power supply system, track circuit, track impedance bond, traction return current, rail potential

Abstract

The paper deals with the urgent problem of increasing the stability of the functioning of the AC railways electric track circuits. It was found that under the regular heavy haul traffic the "rail-ground" potential increase not only results in failures of the rail circuits operation, but also leads to various breaches in the work of all railway departments involved in the organization of train traffic. A simulation model of an AC electrified section on the example of the Zabaikalskaya railway has been developed based on MATLAB software platform. Influence of track impedance bond parameters and the ballast transient resistance on the rail potential value was estimated. The simulation model included the power supply system parameters for the section considered and the real train schedule, provided that the maximum possible number of heavy trains is on the track. Based on the traction calculations performed in the KORTES software the train currents, the reverse traction current and currents in the track sections of inter substation zone are calculated. A research of track impedance bond parameters influence on the rail potentials (RPs) has been carried out. The simulation modeling showed that the distribution of the "rail-ground" potential along the length of the substation zone is significantly influenced by the active resistance of the track throttle transformer impedance bond. At the same time, with the constant value of the ballast resistance, a change in the resistance of the track impedance bond due to humidification and freezing under the influence of large traction currents causes the appearance of potentials exceeding the disruptive voltage of the spark gaps. It was revealed that the rail potential growth is largely associated with the track impedance bond’s active resistance increase. It is noted that humidification and freezing of the ballast layer also leads to the appearance of potentials exceeding the breakdown voltage of spark gaps, which is a significant limitation for the further increase of train weight and traffic intensity for the Siberian and the Far Eastern railways.

Author Biographies

Pavel S. Pinchukov, Far Eastern State Transport University

доцент кафедры "Системы электроснабжения"

Svetlana I. Makasheva, Far Eastern State Transport University

доцент кафедры "Системы электроснабжения"

References

РЖД в цифрах // ОАО «РЖД»: сайт. URL: https://company.rzd.ru/ru/9377/page/103290?id=17127#main-header (дата обращения 20.07.2021).

Пинчуков П.С., Макашева С.И. Устройства релейной защиты в условиях тяжеловесного движения // Железнодорожный транспорт. 2018. № 8. С. 40–42.

Власьевский С.В., Григорьев Н.П., Трофимович П.Н. Встречное регулирование показателей работы в системе тягового электроснабжения переменного тока // Электротехника. 2019. № 7. С. 49–52. DOI: 10.3103/S1068371219070137.

Puzina E.Y., Cherniga M.Y., Khudonogov I.A. Strengthening the power supply system of electrified railways, taking into account the use of interval control devices // 2020 International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon-2020. 2020. С. 9271385. DOI: 10.1109/FarEastCon50210.2020.9271385.

Makasheva S., Pinchukov P., Kostin A. Increasing the Functional Stability of Distance Relay Protection for Various Types of Catenary Support Grounding // Advances in Intelligent Systems and Computing. 2020. Т. 1115 AISC. С. 155–166. DOI: 10.1007/978-3-030-37916-2_17.

Пинчуков П.С., Макашева С.И., Костин А.П. Комплексная оценка работы релейной защиты тяговой сети переменного тока // Вестник Брянского государственного технического университета. 2020. № 7 (92). С. 27–38. DOI: 10.30987/1999-8775-2020-7-27-38.

Шаманов В.И., Пультяков А.В., Трофимов Ю.А. Влияние условий эксплуатации на устойчивость работы АЛСН // Железнодорожный транспорт. 2009. № 5. С. 46–50.

Colella P., Pons E., Tortora A. Rail Potential Calculation: Impact of the Chosen Model on the Safety Analysis // 2018 AEIT International Annual Conference. 2018, pp. 1–6. DOI: 10.23919/AEIT.2018.8577295.

Lee C.H., Wang H.M. Effects of grounding schemes on rail potential and stray currents in Taipei Rail Transit Systems // Electric Power Applications, IEE Proceedings. 2001. P. 148–154. DOI: 10.1049/ip-epa:20010280.

Makasheva S.I. Simulation of a Return Current System for AC Power Traction Network // IOP Conference Series: Earth and Environmental Science, 2019. Vol. 272. С. 022071. DOI: 10.1088/1755-1315/272/2/022071.

Makasheva S., Pinchukov P. Return traction current system’s operation in cold climate regions International // Geotechnical Symposium “Geotechnical Construction of Civil Engineering & Transport Structures of the Asian-Pacific Region” (GCCETS 2018). MATEC Web of Conferences, 2019. Vol. 265 C. 02009. DOI: 10.1051/matecconf/201926502009.

Шаманов В.И. Проблемы электромагнитной совместимости рельсовых цепей с тяговой сетью // Автоматика на транспорте. 2019. Т. 5. № 2. С. 160–185. DOI: 10.20295/2412-9186-2019-5-2-160-185.

Балуев Н.И. Рельсовые цепи – вчера, сегодня, завтра … // Автоматика, связь, информатика. 2019. № 2. С. 30–31.

Ngamkhanong C., Kaewunruen S., Afonso Costa B. State-of-the-art review of railway track resilience monitoring // Infrastructures, 2018. No. 3. P. 3. DOI: 10.3390/ infrastructures3010003.

Рожкин Б.В., Паранин А.В. Анализ условий работы рельсовой линии на основе моделирования растекания обратного тягового тока // Транспорт Урала. 2018. № 4 (59). С. 28–34. DOI: 10.20291/1815-9400-2018-4-28-34.

Lucca G. Influence of railway line characteristics in inductive interference on railway track circuits. IET Sci. Meas. Technol., 2019. No. 13. Pp. 9–16. DOI: 10.1049/iet-smt.2018.5021.

Andrusca M., Adam M., Dragomir A., Lunca E., Seeram R., Postolache O. Condition Monitoring System and Faults Detection for Impedance Bonds from Railway Infrastructure // Applied Sciences. 2020. No. 10. Pp. 61–67. DOI:10.3390/app10186167 10.3390/app10186167.

ГИД УРАЛ-ВНИИЖТ: Справочная система // ГИД УРАЛ-ВНИИЖТ: сайт. URL: http://gidural.ru/doku.php (дата обращения 22.07.2021).

Yang S., Roberts C., Chen L. Development and performance analysis of a novel impedance bond for railway track circuits // Electrical Systems in Transportation. 2013. Vol. 3. Pp. 50–55. DOI:10.1049/iet-est.2013.0004.

Аркатов В.С., Аркатов Ю.В., Казеев С.В., Ободовский Ю.В. Рельсовые цепи магистральных железных дорог: справочник Изд. 3-е, перераб. и доп. М.: ООО «МиссияМ», 2006. 496 с.

Published

2021-09-30

How to Cite

Пинчуков, П. С., & Макашева, С. И. (2021). Analysis of the reverse traction current influence on the track circuits operation. Modern Technologies. System Analysis. Modeling, (3(71), 40-49. Retrieved from https://ojs.irgups.ru/index.php/stsam/article/view/140