Modeling of single-phase fault modes in power supply systems of non-traction consumers

Authors

  • Andrei Vasil'evich Kryukov Irkutsk State Transport University
  • Il'ya Sergeevich Ovechkin Irkutsk State Transport University

Keywords:

single-phase ground faults, power supply systems for railway transport facilities, electric transmission lines, Fazonord software package, modeling

Abstract

Every year, due to accidents in the networks providing power supply to signal points, delays occur in the movement of several thousand trains. A significant proportion of the total number of failures are single-phase ground faults. The peculiarity of this type of malfunction consists in small currents, which greatly complicates the detection of their occurrence. Damaged electric transmission lines are not switched off by relay protection, while in long-term modes of single-phase ground faults, the structure of reinforced concrete supports may be destroyed when a single-phase ground fault current flows through them. In addition, an increase in the voltage of healthy phases relative to the ground to linear values may result in insulation breakdown and the occurrence of two-phase short circuits. The modes of single-phase ground faults in general-purpose networks are considered in detail in a large number of domestic and foreign publications. However, the task of determining such modes in technological lines of electric transmissions on railway transport located in areas of increased electromagnetic influences of traction networks remains unresolved in full. To solve it, it is possible to effectively use methods of modeling modes of railway power supply systems developed at the Irkutsk State Transport University and implemented in the Fazonord software package. The article describes a model of a system of railway transport facilities, including an overhead line of longitudinal power supply mounted on supports of a contact network. The results of determining the modes of single-phase ground faults are presented. Conclusions are drawn about the influence of the power grid on short-circuit currents. The digital models described in the article allow to obtain complete information about the modes of single-phase ground faults at the fundamental frequency and at higher harmonic frequencies and can find practical application in solving problems of configuring devices that identify single-phase ground faults, as well as for developing methods for localizing their occurrence in networks subject to electromagnetic influences.

Author Biographies

Andrei Vasil'evich Kryukov, Irkutsk State Transport University

Doctor of Engineering Science, Full Professor, Professor of the Department of Electric Power Engineering of Transport; Professor of the Department of Power Supply and Electrical Engineering

Il'ya Sergeevich Ovechkin, Irkutsk State Transport University

Ph.D. Student of the Department of Electric Power Industry of Transport

References

Аржанников Б.А., Сергеев Б.С., Набойченко И.О. Системы электроснабжения устройств СЦБ. Екатеринбург : Ур-ГУПС, 2009. 99 с.

Оценка распределения токов однофазного замыкания на землю в сетях с изолированной нейтралью при помощи программного комплекса RASTRWIN / Е.В. Перьков, А.А. Цагикян, С.С. Ястребов и др. // Электроэнергетика глазами молодежи-2020 : Материалы ХI Междунар. науч.-техн. конф. Ставрополь, 2020. Т. 1. С. 287–290.

Phase asymmetry: a new parameter for detecting single-phase ground faults in compensated MV networks / K.J. Sagasta-beitia, I. Zamora, A.J. Mazon et al. // IEEE Trans Power Delivery. 2011. Vol. 26, Iss. 4. P. 2251–2258. DOI: 10.1109/TPWRD.2011.2141155.

Разработка методов определения токов однофазного замыкания на землю и утечки в несимметричной сети с изолированной нейтралью / Б.Б. Утегулов, А.Б. Утегулов, А.Б. Уахитова и др. // Наука и техника Казахстана. №1. 2010. С 18–20.

Утегулов Б.Б., Шинтемиров А.М. Математическое моделирование устройства автоматического определения тока однофазного замыкания на землю в электрических сетях 6–10 кВ // Наука и техника Казахстана. 2003. №2. С. 174–181.

Осипов Д.С., Долингер С.Ю., Сафонов Д.Г. Разработка алгоритма автоматической настройки компенсации емкостных токов на основе существующих методов // Омский научный вестник. № 4 (148). 2016. С. 79–84.

Single-phase-to-ground fault detection with distributed parameters analysis in non-direct grounded systems / L. Baowen, M. Hongzhong, X. Honghua et al. // CSEE Journal of Power and Energy Systems. 2019. Vol. 5. Iss. 1. P. 139–147. DOI: 10.17775/CSEEJPES.2016.00740.

Low-current fault detection in high impedance grounded distribution networks, using residual variations of asymmetries / K.J. Sagastabeitia, I. Zamora, A.J. Mazon et al. // IET Generation, Transmission & Distribution. 2012. Vol. 6. Iss. 12. P. 1252–1261. DOI: 10.1049/iet-gtd.2012.0195.

Pandakov K, Høidalen H.K., Trætteberg S. An additional criterion for faulty feeder selection during ground faults in compen-sated distribution networks // IEEE Trans on Power Delivery. 2018. Vol. 33. Iss. 6. P. 2930–2937. DOI: 10.1109/TPWRD.2018.2843528.

Review of Medium-voltage switchgear fault detection in a condition-based monitoring system by using deep learning / Y.A.M. Alsumaidaee, C.T. Yaw, S.P. Koh et al. // Energies. 2022. Vol. 15. Iss. 18. DOI: 10.3390/en15186762.

Ahmadi A., Aghajari E., Zangeneh M. Earth fault detection in distributed power systems on the basis of artificial neural networks approach // Journal of Engg Research on Line First Article. 2021. DOI: 10.36909/jer.13627.

Deep-learning-based ground fault detection using continuous wavelet transform and convolutional neural network in reso-nant grounding distribution systems / M.-F. Guo, X.-D. Zeng, D.-Yu. Chen et al. // IEEE Sensors Journal. 2018. Vol. 18. Iss. 3. P. 1291–1300. DOI: 10.1109/JSEN.2017.2776238.

Single line-to-ground faulted line detection of distribution systems with resonant grounding based on feature fusion frame-work / D. Ying, L. Yadong, S. Qingzhu e al. // IEEE Trans Power Delivery. 2019. Vol. 34. Iss. 4. P. 1766–1775. DOI: 10.1109/TPWRD.2019.2922480.

Detection of single line-to-ground fault using convolutional neural network and task decomposition framework in distribu-tion systems / D. Ying, S. Qingzhu, L. Yadong et al. // 2018 Condition Monitoring and Diagnosis (CMD). Perth, 2018. DOI: 10.1109/CMD.2018.8535600.

M.-F. Guo, N.-C. Yang. Features-clustering-based ground fault detection using singular value decomposition and fuzzy c-means in resonant grounding distribution systems // International Journal of Electrical Power & Energy Systems. 2017. Vol. 93. P. 97–108. DOI: http://dx.doi.org/10.1016/j.ijepes.2017.05.014.

Fault feeder detection method utilized steady state and transient components based on FFT backstepping in distribution net-works / W. Xiaowei, W. Xiangxiang, Y. De-chang et al. // International Journal of Electrical Power & Energy Systems. 2020. Vol. 114. DOI: 10.1016/j.ijepes.2019.105391.

Faulty feeder detection method based on VMD–FFT and Pearson correlation coefficient of non-power frequency compo-nent in resonant grounded systems / K. Wei, J. Zhang, Y. He et al. // Energies. 2020. Vol. 13. Iss. 18. DOI: 10.3390/en13184724.

Fault diagnosis algorithm for distribution line based on wavelet singular entropy and wavelet energy entropy / L. Rui,

Y. Nan-hua, G. Ming et al. // 2017 IEEE 2nd advanced information technology, electronic and automation control conference (IAEAC). Chongqing, 2017. P. 2395–2398. DOI: 10.1109/IAEAC.2017.8054451.

Costa F.B. Fault-induced transient detection based on real-time analysis of the wavelet coefficient energy // IEEE Transac-tions on Power Delivery. 2014. Vol. 29. Iss. 1. P. 140–153. DOI: 10.1109/TPWRD.2013.2278272.

Закарюкин В.П., Крюков А.В. Сложнонесимметричные режимы электрических систем. Иркутск : ИрГУПС, 2005. 273 с.

Закарюкин В.П., Крюков А.В. Методы совместного моделирования систем тягового и внешнего электроснабжения железных дорог переменного тока. Иркутск : ИрГУПС, 2011. 160 с.

Published

2024-08-05

How to Cite

Крюков, А. В., & Овечкин, И. С. (2024). Modeling of single-phase fault modes in power supply systems of non-traction consumers. Modern Technologies. System Analysis. Modeling, (2(82), 10-23. Retrieved from https://ojs.irgups.ru/index.php/stsam/article/view/1574

Most read articles by the same author(s)