Analysis of the influence of the trajectory of motion of a dynamic controlled object on the accuracy of determining navigation parameters
Keywords:
dynamic controlled object, optimization, observability, trajectory control, Kalman’s filter, navigation definition errors, trajectory, geometric factorAbstract
To implement the requirements of the International Civil Aviation Organization of increasing the capacity and use efficiency of airspace, an area navigation strategy and its component – free flight routing – have been developed. The aim of the research is to analyze the influence of the trajectory of a dynamic controlled object on the accuracy of determining coordinates in the course of area navigation and free flight routing. This article analyzes the influence of the chosen flight route on the accuracy of determining the navigation parameters within the framework of the Kalman’s extended filter algorithm. It is shown that there is an unambiguous dependence of the radial error, geometric factor, and observability measure on the trajectory rotation angle. Based on the analysis, it is proposed to use the observability measure to form an optimization criterion in the process of implementation of area navigation. The methods of statistical simulation have confirmed the unambiguous relationship between the geometric factor, the observability measure and the trace of the covariance matrix of filtering errors for various trajectories of movement of a dynamic controlled object. The proposed approach seems to be more rational in comparison with the calculation of the covariance matrix of the estimation errors while practically implementing optimal control algorithms in the navigation processor because of the reduction in the amount of computations. The results of the analysis allow us to consider the maximum of the observability measure as a decision rule in the problems of trajectory optimization, as well as in observation control algorithms.
References
Maolaaisha A. Free-Flight Trajectory Optimization by Mixed Integer Programming : а thesis submitted to fulfillment of the requirements for the degree of master in science. Applied Mathematics and Optimization Series (AMOS). Hamburg, 2015. 74 p.
Toratani D. Study on Simultaneous Optimization Method for Trajectory and Sequence of Air Traffic Management : doctoral Thesis. Yokohama National University, 2016. 101 p.
Rub´en Ant´on Guijarro. Commercial aircraft trajectory optimization using optimal control : bachelor Thesis. Universidad Carlos III de Madrid, 2015. 64 p.
Multiphase Mixed-Integer Optimal Control Approach to Aircraft Trajectory Optimization / M. Soler, A. Olivares, E. Staffetti, P. Bonami // Journal of Guidance, Control and Dynamics. 2013.Vol. 36(5). P. 1267–1277.
Wickramasinghe N.K., Harada A., Miyazawa Y. Flight trajectory optimization for an efficient air transportation system // Proceedings of the 28th International Congress of the Aeronautical Sciences. 2012. Pp. 1–12.
Интегрированные инерциально-спутниковые системы ориентации и навигации / Г.И. Емельянцев, А.П. Степанов. СПб. : Концерн «ЦНИИ «Электроприбор», 2016. 394 с.
ГЛОНАСС. Принципы построения и функционирования / под ред. А.И. Перова, В.Н. Харисова. Изд. 4-е, перераб. и доп. М. : Радиотехника, 2010. 800 с.
Шестаков И.Н., Крыжановский Г.А. Расширение поля СРНС с помощью наземных станций АЗН-В // Науч. вестн. МГТУ ГА. 2014 (210). С. 114–117.
Investigation and realisation of integrated navigation system using optimal pseudo sensor enhancement method / Ya.M. Madany, El-Sayed A. El-Badawy, Nour Eldin H. Ismail et al. // IET Radar, Sonar & Navigation. 2019. Vol. 13. DOI: 10.1049/iet-rsn.2018.5295.
Cho T., Lee C., Choi. S. Multi-Sensor Fusion with Interacting Multiple Model Filter for Improved Aircraft Position Ac-curacy // Sensors. 2013. Vol. 13. P. 4122–4137. DOI: 10.3390/s130404122.
Strohmeier M., Lenders V., Martinovic I. On the Security of the Automatic Dependent Surveillance-Broadcast // Protocol IEEE Communications Surveys & Tutorials. 2014. Vol. 17 (2). P. 1065–1087.
Методы траекторного управления наблюдением в интегрированных многодатчиковых двухпозиционных системах радиомониторинга воздушного базирования / В.И. Меркулов, Д.А. Миляков, О.Е. Радоминов и др. // Журнал радио-электроники. 2016. № 4. С. 1–64.
Aleshechkin A.M., Erokhin V.V. Trajectory optimization of dynamically controlled objects in INS/GNSS integrated nav-igation system // Gyroscopy and Navigation. 2017. Vol. 8. Iss. 1. P. 15–23.
Монаков А.А., Киселев В.Ю. Предсказание траектории воздушного судна в автоматизированных системах управления воздушным движением // Информационно-управляющие системы. 2015. № 4. С. 33–40.
User Manual for the Base of Aircraft Data (BADA). Revision 3.12 [Electronic resource]. Access mode: URL: https://www.eurocontrol.int/sites/default/files/field_tabs/content/documents/sesar/user-manual-bada-3-12.pdf (accessed date: 06/05/2017).
Bruce P., A Gibbs. Advanced Kalman filtering, least-squares and modeling: a practical handbook. John Wiley & Sons, Inc., publication, 2011. 605 p.
Тятюшкин А.И. Многометодная технология оптимизации управляемых систем. Новосибирск : Наука, 2006. 343 с.
Карапетян Р.М. Алгоритмы оценки качества и синтеза линейных систем управления. Рига : ЛРП ВНТОМ, 1989. 52 c.