Mesures for eradication of signaling subsystem false triggering in the AMT telemechanics system within the range of Chita power supply distance of Zabaykalskaya railroad, the subdepartment of Russian Railways

Authors

  • Andrey V. Rogalyov Zabaikalsk Rail Transport Institute, a branch of Irkutsk State Transport University
  • Alexander G. Emelyanov Zabaikalsk Rail Transport Institute, a branch of Irkutsk State Transport University
  • Sergey N. Andaliev Chita distance Power supply ECH-1, Trans-Baikal Directorate for Power Supply JV “Transenergo” – branch of the Russian Railways

Keywords:

telesignaling, telemechanics system, interference signal,

Abstract

The article is dedicated to the actual problem of the occurance of an accidental false triggering in the remote signaling subsystem of the AMT telemechanics system. The paths of possible interference into the input / output circuits of the signal conversion modules of the TS of the TU-TS AMT-002 rack located at the EC post of the Tyrgetuy station located within the Chita power supply distance ECH-1 of the Trans-Baikal Railway are analyzed in detail. In orger to research the AMT tele-signaling subsystem operation, a simulation model of the input circuits of the optocouplers of the MST-95 and AMT telemechanics system was developed. An assessment of the degree of circuitry influence upon the sensitivity of the input element of the MST-95 optocoupler module  and AMT telemechanics system has been carried out. The simulation model was based on the real parameters of the electronic components of the MST-95 and AMT  tracks. Based on the calculations performed in the Multisim 11.0 software package, the responses to the interference effect were determined for four different options of eliminating false alarms. The performed simulation showed that the degree of the input  circuits sensitivity of the optocouplers of the MCT-95 and AMT telemechanics systems is significantly influenced by the value of the input impedance of the optocoupler. At the same time, the influence of interference significantly exceeding the nominal values magnitude of the optocoupler actuation voltage, causes the latter's actuation, resulting in the emergence of a false indication of the telesignalization actuation at the ECH. In this case, under the influence of the interference voltage, a voltage is formed in the input circuits of the optocouplers, leading to its abnormal triggering. The increase in the sensitivity of the optocoupler module of the AMT telemechanics system, compared to the MST-95,  as designed structurally, was found to be a source of abnormal triggering of the optocoupler phototransistor, both in the presence and the absense of the interference voltage. It was noted that the operating conditions of the existing circuits of the AMT optocoupler module results in a false triggering of the TS subsystem, the latter presenting a significant limitation in organizing energy dispatch control of the configuration of the traction power supply system, which is critically important to ensure a reliable and efficient transportation process within the boundaries of ECH-1 ZabNTE.

References

Аппаратура микроэлектронной системы телемеханики МСТ-95. М.: МЭЗ ДКРЭ ОАО РЖД, 2001. 14 с.

Аппаратура микропроцессорной системы телемеханики АМТ. М.: МЭЗ ДКРЭ ОАО РЖД, 2018. 31 с.

Протокол технического Совета ЗабНТЭ. Приложение 2: приказ № 227 от 23 июля 2020 г. по РРУ ЭЧ-1. Чита: ЗабНТЭ, 2020. 4 с.

Проект технического перевооружения системы телемеханики на участке Хилок – Яблоновая: рабочая документация 6036-0.0-ТЛМ. Чита: ЗабНТЭ, 2018. 62 с.

Multisim – NI. URL: https://www.ni.com/ru-ru/shop/electronic-test-instru-mentation/application-software-for-electronic-test-and-instrumentation-category/what-is-multisim/multisim-еdu-cation (дата обращения: 21.07.2021).

Бадер М.П. Электромагнитная совместимость. М.: УМК МПС, 2002. 637 с.

Горлов Н.И., Михайловская Ж.А., Первушина Л.В. Методы и средства измерений параметров электрических кабелей связи. Новосибирск: СибГУТИ, 2009. 258 с.

Шалягин Д.В., Цыбуля Н.А., Косенко С.С., Волков А.А. и др. Устройства железнодорожной автоматики, телемеханики и связи. Ч. 1. М.: Маршрут, 2006. 587 с.

Московский электромеханический завод. URL: https://mez.ru (дата обращения: 12.01.2021).

Почаевец В.С. Автоматизированные системы управления устройствами электроснабжения железных дорог. М.: Маршрут, 2003. 318 с.

ГОСТ Р 33398-2015. Железнодорожная электросвязь. Правила защиты проводной связи от влияния тяговой сети электрифицированных железных дорог постоянного и переменного тока. М.: Стандартинформ, 2015. Т. II. 21 с.

ChipDip. URL: https://www.chipdip.ru (дата обращения: 9.02.2021).

Datasheet California Eastern Labs. URL: www.alldatasheet.com (дата обращения: 9.02.2021).

Чернов Ю.А. Электроснабжение электрических железных дорог. М.: УМЦ ЖДТ, 2016. 404с.

Володин С.В., Иванов В.В., Просвиров Ю.Е и др. Электрические железные дороги. М.: УМЦ ЖДТ, 2010. 355 с.

Шишов О.В. Современные технологии промышленной автоматизации. Москва, Берлин: Директ-Медиа, 2015. 256 с.

Tornado modular systems. URL: https://tornado.nsk.ru (дата обращения: 10.01.2021).

Харлов Н.Н. Электромагнитная совместимость в электроэнергетике. Томск: Изд-во ТПУ, 2007. 207 с.

Протокол технического Совета ЗабНТЭ//Статистика отказов устройств ТМ ЭЧ-1 за период 2013 – 2020 гг. Чита: ЗабНТЭ, 2020.

ГОСТ IEC 60870-4 – 2011. Ч. 4. Технические требования. Устройства и системы телемеханики. М.: Стандартинформ, 2014. 23 с.

Published

2021-09-30

How to Cite

Рогалёв, А. В., Емельянов, А. Г., & Андалиев, С. Н. (2021). Mesures for eradication of signaling subsystem false triggering in the AMT telemechanics system within the range of Chita power supply distance of Zabaykalskaya railroad, the subdepartment of Russian Railways. Modern Technologies. System Analysis. Modeling, (3(71), 59-66. Retrieved from https://ojs.irgups.ru/index.php/stsam/article/view/185