Research of the angular velocity of rotation of the pendulum on the rotating shaft of the mechanical system
Keywords:
pendulum, angular velocity, rotating shaft, mechanical system, sticking effect, dampingAbstract
This work deals with further research of the effect of “sticking” of a pendulum on the rotating shaft of a mechanical system. Essentially, with a certain ratio between the friction torque in the support of the pendulum mounted with the possibility of free rotation on the mechanical system rotor shaft, and its mass and length there is such a mode of motion when the rotor spins with a given angular velocity, and the angular velocity (rotation frequency) coincides with one of the natural frequencies of the mechanical system. Researches were conducted in the model with two degrees of freedom and a pendulum mounted with the possibility of free rotation on the shaft of its mechanical system. Nonlinear differential equations, not solved with respect to a higher derivative, were obtained for this model with a pendulum. As a result of a numerical integration of these equations, the laws of the pendulum rotation with different friction coefficients in its support are formulated, including the case when the pendulum “sticks” on the natural frequencies of the model. By means of substantiated assumptions, a separate differential equation of the pendulum motion on the rotating shaft of the model was derived. From this equation one can clearly see that the rotation of the pendulum on the shaft and, respectively, the effect of “sticking” are influenced not only by friction in the pendulum’s support, but also by the natural frequency of oscillations and damping of the mechanical system. Calculated curves of the pendulum’s acceleration laws during the integration of the system of equations showed close coincidence, which is indicative of the veracity of the results obtained. A research of the influence of damping on the likelihood of the effect of “sticking” of the pendulum on the rotating shaft was carried out.
References
Артюнин А.И. Исследование движения ротора с автобалансиром // Известия вузов. Машиностроение. 1993. № 1. С. 15–18.
Артюнин А.И. Эффект «застревания» и особенности движения ротора с маятниковым автобалансиром // Наука и образование: электронное научно-техническое издание. МГТУ им. Н.Э. Баумана. 2013. № 8. С. 443–454.
Artyunin A.I., Eliseev S.V., Sumenkov O. Yu. Experimental Studies on Influence of Natural Frequencies of Oscillations of Mechanical system on Angular Velocity of Pendulum on Rotating Shaft // Lecture Notes in Mechanical Engineering ICIE-2018, Proceedings of the 4^th International Conference on Industrial Engineering. pp. 159–166.
Artyunin A.I., Barsukov C.V., Sumenkov O. Yu. Peculiarities of Motion of Pendulum on Mechanical Sistem Engine Potating Shaft // Lecture Notes in Mechanical Engineering ICIE-2019, Proceedings of the 5^th International Conference on Industrial Engineering. V1. pp. 649–657.
Галилей Г. Избранные труды в двух томах. М.: Наука, 1964. Т. 2. 572 с.
Ньютон И. Математические начала натуральной философии. М.: ЛЕНАНАД, 2017. 707 с.
Гюйгенс Х. Три мемуара по механике. М.: Изд-во АН СССР, 1951. 578 с.
Stephenson A. On a new type of dynamic stability // Memoirs and Proceedings of the Manchester Literary and Philosophical Society, 1908. Vol. 52. No. 8, pp. 1–10.
Erdelyi A. Uber die kleinen Schwingungen eines Pendels mit oszillierenden Aufhangepunkt // Zeitschrift fur angewandte Mathematik und Mechanik, 1934. Bd.14, pp. 235–247.
Боголюбов Н.Н. О некоторых статистических методах в математической физике. Львов: Изд-во АН УССР, 1945. 137 с.
Боголюбов Н.Н. Теория возмущений в нелинейной механике. Киев: Сб. трудов Ин-та строит. механики АН УССР, 1950. Т. 14. С. 9–34.
Капица П.Л. Динамическая устойчивость маятника при колеблющейся точке подвеса // Журнал экспериментальной и теоретической физики, 1951. Т. 21. Вып. 5. С. 588–597.
Капица П.Л. Маятник с вибрирующим подвесом // Успехи физ. наук, 1951. Т. XLIV. Вып. 1. С. 7–20.
Челомей В.Н. Избранные труды. М.: Машиностроение, 1989. 335 с.
Рагульскис К.М. Механизмы на вибрирующем основании (Вопросы динамики и устойчивости). Каунас: Изд-во Ин-та энергетики и электротехники АН ЛитССР, 1963. 232 с.
Стрижак Т.Г. Методы исследования динамических систем типа «маятник». Алма-Ата: Наука, 1981. 254 с.
Сейранян А.А., Сейранян А.П. Об устойчивости перевернутого маятника с вибрирующей точкой подвеса // Прикладная математика и механика, 2006. Т. 70. С. 835–843.
Мартыненко Ю.Г., Формальский М.А. Управляемый маятник на подвижном основании // Известия РАН. Механика твердого тела, 2013. № 1. С. 9–23.
Холостова О.В. Задачи динамики тел с вибрирующим подвесом. Ижевск: изд-во ИКИ, 2016. 308 с.
Блехман И.И. Вибрационная механика. М.: Физматлит. 1994. 400 с.
Блехман И.И. Вибрационная механика и вибрационная реология. М.: Физматлит, 2018. 752 с.
Ryzhik B., Sperling L., Duckstein H. Display of the Sommerfeld-Effekt in a Rigid Rotor One-plain Autobalancing Device. Proc. Of XXX Summer School «Advanced Problems in Mechanics» 2002. pp. 25–36.
Ryzhik B., Sperling L., Duckstein H. Non-synchronous Motions Near Speeds in a Single-plane Autobalancing Device // Technische Mechanik. 2004, Vol. 24. pp. 25–36.
Lu C.J., Tien M.-H. Pure-rotary periodic motions of a planar two-ball auno-balancer system // Mechanical Systems and Signal Processing. 2012. Vol. 32. pp. 251–268.