Simulation of vector control of an asynchronous motor in a rotating system of coordinates
Keywords:
asynchronous motor, spatial generalizing vector, rotating coordinate system, math modeling, MatLab (Simulink)Abstract
The development of power semiconductor engeneering and technology served as the basis for the introduction of new types of frequency controlled electric drives on the rolling stock. At the same time, the problem of theoretical and experimental research of various operating modes of the drive becomes relevant. The paper presents a mathematical model of an asynchronous motor in a rotating coordinate system 0 - d - q, as well as the results of modeling performed in the MatLab / Simulink package. To check the results obtained in the theoretical part of the work, an experimental stand was developed. The purpose of the experiment was to obtain the dependencies of the electromagnetic torque of the motor and its speed during the start-up process, as well as to compare the obtained dependencies with the corresponding characteristics calculatedduring the simulation. A typical four-pole asynchronous motor with a squirrel-cage rotor AIR71A4 with a rated speed of 1370 rpm was used in the work.The motor was installed in an experimental stand, which made it possible to set and calculate the electromagnetic torque on the asynchronous motor shaft using an electromagnetic clutch. That allowed to check the adequacy of the developed engine simulation model. The obtained mathematical model can be used to simulate an electric drive in various operational modes. Comparative analysis of the calculated and experimental values indicates the validity of the theoretical positions adopted in the development of the simulation model. The simulation model of an induction motor obtained in the MatLab / Simulink software package adequately defines electromagnetic processes and can be used in the development of a vector control system, as well as in the educational process within the framework of the corresponding discipline.
References
Кравчик А.Э., Шлаф М.М., Афонин В.И. и др. Асинхронные двигатели серии 4А. М.: Энергоиздат, 1982. 504 с.
Akagi H., Kanazawa Y. and Nabae A. Instantaneous reactive power compensators comprising switching devices without energy storage components // IEEE Transaction on Industry Applications, 1984. Vol. IA-20, no. 3. Pp. 625–630.
Edith Clarke. Circuit Analysis of AC Power Systems. Vol. 1, Wiley, New York, 1943.
Bellan D. Clarke Transformation Solution of Asymmetrical Transients in Three-Phase Circuits. Energies. 2020.
Бессонов Л.А. Теоретические основы электротехники. М.: Гардарики, 2000. 638 с.
Кулинич Ю.М. Компенсация реактивной мощности. М.: ФГБУ ДПО «Учебно-методический центр по образованию на железнодорожном транспорте», 2020. 182 с.
Milanes-Montero M.I., Romero-Cadaval E., de Marcos A.R., et al. Novel Method for Synchronization to Disturbed Three-Phase and Single-Phase Systems // Industrial Electronics, 2007. IEEE International Symposium on Date 4–7 June 2007. Pp. 860–865.
Усольцев А.А. Частотное управление асинхронным двигателем. СПб.: Изд-во Санкт-Петербургского государственного университета информационных технологий, механики и оптики, 2006. 94 с.
Терёхин В.Б. Моделирование систем электропривода в Simulink (MatLab 7.0.1). Томск: Изд-во Томского политехнического университета, 2008. 320 с.
Панкратов В.В. Векторное управление асинхронными электроприводами. Новосибирск: Изд-во НГТУ, 1999. 66 с.
Калачёв Ю.Н. SimInTex: моделирование в электроприводе. М.: ДМК Пресс, 2019. 98 с.
Вольдек А.И. Электрические машины. М.: Изд-во Энергия, 1974. 839 с.
Мигдалёнок А.А. Моделирование электропривода на ЭВМ. Минск: Изд-во БНТУ, 2010. 94 с.
Дьяконов В.П. Simulink: Самоучитель. М.: ДМК Пресс, 2015. 782 с.
Eshkabilov S. Beginning MATLAB and Simulink: From Novice to Professional. Apress. 2019. 544 p.
Герман-Галкин С.Г. Виртуальные лаборатории полупроводниковых систем в среде Matlab-Simulink. СПб.: Лань, 2013. 448 с.
Yousef A. Abdel maksoud S. Review on Field Oriented Control of Induction Motor // International Journal For Research In Emerging Science And Technology. 2015. Vol. 12, no. 2(7).
Шрейнер Р.Т. Математическое моделирование электропривода переменного тока с полупроводниковыми преобразователями частоты. Екатеринбург: УРО РАН, 2000. 654 с.