Digital models of advanced high-voltage traction power supply systems

Authors

  • Andrej V. Kryukov Irkutsk State Transport University; Irkutsk National Research Technical University
  • Aleksandr V. Cherepanov Irkutsk State Transport University
  • Andrej D. Stepanov Irkutsk State Transport University
  • Dmitriy A. Seredkin Irkutsk State Transport University
  • Il`ya A. Fesak Irkutsk State Transport University

Keywords:

high-voltage traction power supply systems, electricity quality, energy efficiency, electromagnetic fields, modeling

Abstract

One of the ways to solve the problems of increasing energy efficiency and improving the quality of electricity in the power supply systems of the main railways is by using high voltage traction networks (TN). Under modern conditions, the introduction of such networks requires the development of their digital models providing an adequate analysis of the quality of electricity, energy efficiency, electromagnetic compatibility and safety. Such models can be built based upon the methods for modeling the modes of power supply systems in phase coordinates, implemented in the Fazonord software complex, developed at the Irkutsk State University of Communications. The article presents the results of modeling the modes of promising power supply systems for railways with traction networks of 50 and 50 +110 kV. For comparison, a simulation of the modes of a traditional 25 kV TN was carried out. The results obtained made it possible to formulate the following conclusions: TN 50 + 110 kV provides the best voltage stabilization at the pantographs of electric rolling stock; high-voltage traction networks allow to reduce the currents of electric locomotives and reduce the heating of the wires of the contact network; the lowest power losses are provided by the TN 50 + 110 kV; at the same time, this is the TN that the lowest indicators of loss variability are observed for; due to the use of the increased voltage networks, a reduction in the total power consumption is possible to obtain ; the use of a high voltage vehicle results in the increase in the levels of the electric field strength as compared to a 25 kV vehicle, the maximum and average values of the 50 kV vehicle intensity are higher by 82 and 84 %, respectively; however, similar parameters of the TN 50 + 110 kV due to the supply line are reduced by 15 and 16%; The magnetic field strength of promising power supply systems, as compared to the 25 kV TN, decreases for 50 kV and 50 + 110 kV TN by 50 and 84 %, respectively.

References

Котельников А.В. Электрификация железных дорог. Мировые тенденции и перспективы. М. : Интекст, 2002. 104 с.

Котельников А.В., Нестрахов А.С. Железнодорожный транспорт России в 2000-2030 гг. (научная концепция) // Вестник ВНИИЖТ. 2000. № 5. С. 3–15.

Kotelnikov A., Glonti A. Word trends in the development of railway electrification // Rail International. 2001. August/September. P. 26–35.

Бадёр М.П., Иньков Ю.М., Розенберг Е.Н. Энергосберегающие технологии интеллектуального железнодорожного транспорта // Электроника и электрооборудование транспорта. 2012. № 4. С. 36–43.

Котельников А.В., Лисицын А.Л., Быков В.А. Перспективы развития электрификации железных дорог России и задачи электротехнической промышленности по ее обеспечению // Электро. 2001. № 2. С. 2–4.

Василянский А.М., Мамошин Р.Р., Якимов Г.Б. Совершенствование системы тягового электроснабжения железных дорог, электрифицированных на переменном токе 27,5 кВ, 50 Гц // Железные дороги мира. 2002. № 8. С. 40–46.

Электромагнитная безопасность систем тягового электроснабжения повышенного напряжения / А.В. Котельников, А.Б. Косарев, И.И. Полишкина и др. // Вестник ВНИИЖТ. 2002. № 6. С. 10–14.

Ogunsola A., Reggiani U., Sandrolini L. Modelling Electromagnetic Fields Propagated from an AC Electrified Railway Using TLM // International Symposium on Electromagnetic Compatibility. EMC’09. Kyoto, 2009. P. 567–570.

Analysis of adverse effects on the public power grid brought by traction power-supply system / Gao Lin, Xu Yonghai, Xiao Xiangnin et al. // 2008 IEEE Canada Electric Power Conference. 2008. DOI: 10.1109/EPC.2008.4763383.

Modeling and Simulation for Traction Power Supply System of High-Speed Railway / Han Zhengqing, Zhang Yuge, Liu Shuping et al. // Asia-Pacific Power and Energy Engineering Conference. 2011. DOI: 10.1109/APPEEC.2011.5748640.

Lei Xue, Xiaoqing Han, Shuying Li. Influence of traction transformer with different connection forms on power quality of the grid // 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). 2018. DOI: 10.1109/EI2.2018.8582113.

Alexander Cherepanov, Anton Kutsiy. Modeling of Tractive Power Supply Systems for Heavy-Tonnage Trains Operation // 2018 International Russian Automation Conference (RusAutoCon). DOI:10.1007/978-3-319-70987-1_10.

Xishan Yu. General Mathematical Model of AC Traction Power Supply System Simulation Based on Mathematical Reasoning and Its Application Research // IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS). 2020.| DOI: 10.1109/ICAIIS49377.2020.9194938.

Modelling on Novel Cable Traction Power Supply System and Power Distribution Analysis / Zhang Liyan, Liang Shiwen, Li Xin et al. // IEEE Transactions on Power Delivery. 2021. DOI: 10.1109/TPWRD.2021.3069980.

Study on new traction power supply system for power quality comprehensive compensation in electrified railway / Chen Minwu, Luo Jie, Jiang Wenbing et al. // TENCON 2015. 2015 IEEE Region 10 Conference. 2015. DOI: 10.1109/TENCON.2015.7372869.

Railway Traction Supply with PV integration for Power Quality Issues / Mohamed Rageh, Auguste Ndtoungou, Abdelhamid Hamadi et al. // IECON 2018 44th Annual Conference of the IEEE Industrial Electronics Society. 2018. DOI: 10.1109/IECON.2018.8591768.

Nezevak V., Cheremisin V. Prediction of Bandwidth Increase of Railways Areas at the Change Expense of The Direct Current Traction Power Supply System Characteristics by Implementation of Electric Storage Units // International Ural Conference on Electrical Power Engineering (UralCon). 2020. DOI: 10.1109/UralCon49858.2020.9216295.

The Unbalanced Modes Analyze Of Traction Loads Network / U. Bumtsend; M. Safaraliev; A. Ghulomzoda et al. // Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). 2020. DOI: 10.1109/USBEREIT48449.2020.9117758.

Закарюкин В.П., Крюков А.В. Сложнонесимметричные режимы электрических систем. Иркутск: Изд-во Иркут. ун-та. 2005. 273 с.

Буякова Н.В., Закарюкин В.П., Крюков А.В. Электромагнитная безопасность в системах электроснабжения железных дорог: моделирование и управление. Ангарск : Изд-во АнГТУ, 2018. 382 с.

Published

2021-09-30

How to Cite

Крюков, А. В., Черепанов, А. В., Степанов, А. Д., Середкин, Д. А., & Фесак, И. А. (2021). Digital models of advanced high-voltage traction power supply systems. Modern Technologies. System Analysis. Modeling, (3(71), 83-91. Retrieved from https://ojs.irgups.ru/index.php/stsam/article/view/289

Most read articles by the same author(s)