Electromagnetic safety on routes of multiple sections of 25 kV traction networks

Authors

  • Natal'ya Vasil'evna Buyakova Angarsk State Technical University
  • Andrey Vasil'evich Kryukov Irkutsk State Transport University
  • Dmitriy Alexandrovich Seredkin k State Transport University
  • Andrey Dmitrievich Stepanov Irkutsk State Transport University

Keywords:

traction networks, multi-track sections, electromagnetic fields, modeling

Abstract

When designing and operating traction power supply systems, special attention is paid to the safety of the operation of transport power facilities and the reduction of their negative impacts on personnel and the environment. One of the determining factors of such impacts is the possibility of generating significant levels of electromagnetic fields by traction networks of electrified railways. The maximum allowable stress levels that determine the conditions of electromagnetic safety are standardized, and when the established limits are exceeded, special measures are required to be developed and implemented. In modern conditions, characterized by the large-scale use of digitalization tools, the choice of such activities should be based on computer simulation. Therefore, the development of algorithms for determining electromagnetic fields, produced by traction networks is required. To do this, digital models can be used based on methods for determining the traction power supply system modes, implemented in the Fazonord software package. Based on these models, a methodology for analyzing electromagnetic safety is implemented, which differs from the known approaches by its consistency, universality and adequacy to the external environment. The first difference lies in the possibility of calculating the electromagnetic fields based on the determination of the modes of a complex traction power supply systems in phase coordinates. The second one is achieved by the possibility of modeling traction networks of various designs: typical 25 and 2x25 kV, specialized ones, for example, equipped with reinforcing and shielding wires, as well as advanced ones, with increased voltage in the contact network. The third difference is provided by the correct consideration of the relief features, underground utilities, as well as extended metal structures located near the simulated traction networks. The article describes computer models that make it possible to analyze the conditions of electromagnetic safety on the routes of multi-track sections of railways based on the determination of the strengths of electromagnetic fields generated by traction networks. The practical use of these models will make it possible to reasonably choose measures to reduce the negative effects of electromagnetic fields on personnel, technical facilities and the environment.

Author Biographies

Natal'ya Vasil'evna Buyakova, Angarsk State Technical University

Ph.D. in Engineering Science, Associate Professor of Department «Power supply of industrial enterprises»

Andrey Vasil'evich Kryukov, Irkutsk State Transport University

Doctor of Engineering Science, Professor, the Full Professor of Department «Electric power industry of transport»

Dmitriy Alexandrovich Seredkin, k State Transport University

Ph. D. student of Department «Electric power industry of transport»

Andrey Dmitrievich Stepanov, Irkutsk State Transport University

Ph.D. in Engineering Science, Associate Professor of Department «Electric power industry of transport»

References

Косарев А.Б., Косарев Б.И. Основы электромагнитной безопасности систем электроснабжения железнодорожного транспорта. М. : Интекст, 2008. 480 с.

Мисриханов М.Ш., Рубцова Н.Б., Токарский А.Ю. Обеспечение электромагнитной безопасности электросетевых объектов. М. : Наука, 2010. 868 с.

Буякова Н.В., Закарюкин В. П., Крюков А.В. Электромагнитная безопасность в системах электроснабжения железных дорог: моделирование и управление. Ангарск : АнГТУ, 2018. 382 с.

Frey Sh. Railway Electrification Systems & Engineering. Delhi : White Word Publications, 2012. 145 p.

Energieversorgung elektrischer bannen / H. Biesenack, E. Braun, G. George, etc. Wiesbaden : B.G. Teubner Verlag, 2006, 732 p.

Блейк Левитт Б. Защита от электромагнитных полей. О влиянии на организм человека бытовых электроприборов, мобильных телефонов, линий электропередач и других электрических устройств. М. : АСТ, Астрель, 2007. 447 с.

Корсунов А.Р. Разработка метода измерения напряженности электромагнитного поля в пространстве телекоммуникационных средств комплекса электромагнитного воздействия на биоструктуры // Вестн. Национ. техн. ун-та. Сер. Информатика и моделирование. 2007. № 19. С. 111–114.

Н. В., Соловьева Е. Б., Нитч Ю. Низкочастотные помехи в нелинейных электронных устройствах при воздействии внешнего электромагнитного поля // Электричество. 2005. № 8. С. 34–40.

Гизатуллин З.М., Нуриев М.Г., Гизатуллин Р.М. Физическое моделирование электромагнитных помех в электронных средствах при воздействии электромагнитных полей высоковольтных линий электропередачи // Электротехника. 2018. № 5. С. 45–48.

Залесова О.В. Исследование уровня наведенного напряжения на отключенной линии электропередачи, находящейся в зоне влияния тяговой сети железной дороги переменного тока // Вестн. Мурман. гос. техн. ун-та. 2014. Т. 17. № 1. С. 40–45.

Мисриханов М.Ш., Мирзаабдулаев А.О. Анализ причин несчастных случаев и мер защиты от наведенного напряжения на воздушных линиях электропередачи // Электрические станции. 2008. № 11. С. 44–49.

Аполлонский С.М. Проблемы электромагнитной безопасности на электрифицированной железной дороге. Т. II. Электромагнитная безопасность на железной дороге с переменным током в тяговой сети. М. : Русайнс, 2017. 414 с.

Закирова А.Р., Буканов Ж.М. Исследования электромагнитных полей на рабочих местах персонала, обслуживающего контактную сеть // Вестн. Урал. гос. ун-та путей сообщения. 2016. № 2 (30). С. 73–83.

Ogunsola A. and Mariscotti A. Electromagnetic Compatibility in Railways. Berlin Heidelberg : Springer-Verlag 2013. 568 pp.

EMC in Rail Transportation / L. Xiaotian, Z. Haijing, Q. Bo et al. // CUE2016-Applied Energy Symposium and Forum 2016: Low carbon cities & urban energy systems. URL: https://www.sciencedirect.com/science/article/pii/S1876610216316472 (access date: 02.02.2022).

Electromagnetic Fields Related to High Speed Transportation Systems / R. Kircher, J. Klühspies, R. Palka, et al. // Transportation Systems and Technology. 2018. Vol. 4(2). Р. 152–166.

EMC Analysis of Railway Power Substation Modeling and Measurements Aspects / S. Baranowski, H. Ouaddi, L. Kone et al. // Infrastructure Design, Signalling and Security in Railway. InTech. URL: https://www.intechopen.com/chapters/34794. (access date: 10.02.2022).

Oancea C. D., Calin F., Golea V. On the Electromagnetic Field in the Surrounding Area of Railway Equipment and Installations // International Conference on Electromechanical and Energy Systems (SIELMEN). Publisher: IEEE, 2019. DOI: 10.1109/SIELMEN.2019.8905871.

Simulation and Analysis for Electromagnetic Environment of Traction Network / L. Zhang, Y. Zhu, S. Chen, et al. // XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). Publisher: IEEE, 2021. DOI: 10.23919/URSIGASS51995.2021.9560338.

Закарюкин В.П., Крюков А.В. Сложнонесимметричные режимы электрических систем. Иркутск : Изд-во ИрГУПС, 2005. 273 с.

Simulation of Electromagnetic Fields Generated by Overhead Power Linesand Railroad Traction Networks / N.V. Buyakova,, V.P. Zakaryukin, A.V. Kryukov et al. // Energy Systems Research. 2021. Vol. 4, №. 2. Р. 70–88.

Published

2022-03-31

How to Cite

Буякова, Н. В., Крюков, А. В., Середкин, Д. А., & Степанов, А. Д. (2022). Electromagnetic safety on routes of multiple sections of 25 kV traction networks. Modern Technologies. System Analysis. Modeling, (1(73), 104-113. Retrieved from https://ojs.irgups.ru/index.php/stsam/article/view/536

Most read articles by the same author(s)