Development of an algorithm for controlling the power regulators in the testing station of rolling stock traction electric motors
Keywords:
rolling stock, testing station, rectifier, traction motor, electromagnetic compatibility, duty cycle, mathematical modelAbstract
The article deals with the issue of energy efficiency of power regulators used at test stations for rolling stock traction electric motors. The analysis of the existing equipment showed that in thyristor converters switching gaps exist in the sinusoid curves of the supply voltage and non-sinusoidality in the current curve. The presence of these interferences is caused by the existing switching interval, resulting in an interphase short circuit of the switched phases. Besides, the existing power regulators reduce the operating voltage. The analysis of the operation of the proposed power controllers as part of the test station made it possible to develop an effective control algorithm for power semiconductor devices that directly transfer electrical energy from an intermediate energy storage device to traction motors. The repetition rate of voltage pulses applied to the windings of traction electric motors is chosen in such a way that the current ripple factor in the traction motors windings does not exceed 2 % without using a smoothing reactor, which is a distinctive feature of the use of controlled rectifiers, in which a smoothing reactor is used to reduce the ripple factor. The presented mathematical analysis of the power controllers of the test station proves the effectiveness of the developed algorithm for controlling power semiconductor devices. The impact on the supply network is minimized by choosing the appropriate width of the power semiconductor devices control pulses at each stage of the traction electric motors operation. The proposed control algorithm makes it possible not to load the supply network with additional currents providing high electromagnetic compatibility of the test station with the supply network over the entire range of power regulation.
References
Маевский О.А. Энергетические характеристики вентильных преобразователей. М. : Энергия, 1978. 320 с.
Зиновьев Г.С. Прямые методы расчета энергетических показателей вентильных преобразователей. Новосибирск: НГУ, 1990. 219 с.
Демирчан К.С., Нейман Л.Р., Коровкин Н.В. Теоретические основы электротехники. СПб. : Питер, 2009. Т. 2. 431 с.
Теоретические основы электротехники / Под ред. П.А. Ионкина. М.: Высшая школа, 1976. Т. 1. 544 с.
Бессонов Л.А. Теоретические основы электротехники. М. : Высшая школа, 1996. 638 с.
Бадер М.П. Повышение эффективности тягового электроснабжения постоянного тока и обеспечение электромагнитной совместимости // Электроснабжение и водоподготовка. 2000. № 2. С. 62–66.
Prasuna P.V., Rama Rao J.V.G., Lakshmi Ch.M. Improvement in Power Factor & THD Using Dual Boost Converter // International Journal of Engineering Research and Applications (IJERA), 2012. Vol. 2 (4). P. 2368–2376.
Mohanraj K., Danya Bersis C., Sekhar S. Simulation of Open Loop and Feed-BackControlled Bridgeless PFC BoostConverter // Power Electronics and Renewable Energy Systems : proceedings of ICPERES. Springer, 2014. P. 29–38.
Jennela S., Raj Kumar V. THD Analysis of One-Cycle and PWMControlled Active Power Filters // Power Electronics and Renewable Energy Systems : proceedings of ICPERES. Springer, 2014. P. 225-236.
Teigelkotter J., Sprenger D. Мощные преобразователи на IGBT-транзисторах для применения на железнодорожном подвижном составе. Мюнхен: Siemens AG, 2000.
Умов Н.А. Избранные сочинения. М. ; Л. : Гостехиздат, 1950. 571 с.
Poynting J.H. On the Transfer of Energy in the Electromagnetic Field / Philosactions of the Royal Society. London: 175, 1884. P. 343–361.
Уточненный закон сохранения энергии / Н.Л. Рябченок, Т.Л. Алексеева, К.П. Якобчук и др. : Rusnauka : сайт. URL: http://www.rusnauka.com/42_PRNT_2015/Tecnic/5_202603.doc.htm (Дата обращения: 15.08.2022).
Алексеева Т.Л., Рябченок Н.Л. Энергосберегающее использование электрической энергии // Universum: Технические науки. 2016. № 11(32). С. 25–30.
Alekseeva T., Ryabchyonok N., Astrakhantsev L. Technology of Electric Power Efficient Use in Transport. International Scientific Conference Energy Management of Municipal Transportation Facilities and Transport EMMFT 2017. P. 120–133.
Инновационные перспективы тягового электроподвижного состава / А.В. Воротилкин, Н.Л. Михальчук, Н.Л. Рябченок и др. // Мир транспорта. 2015. Т. 13. № 6. С. 62–76.
Бурков А.Т. Электроника и преобразовательная техника. М. : УМЦ по образованию на ж.-д. трансп., 2015. Т. 2. 307 с.
Шахунянц Г.М. Железнодорожный путь. М. : Транспорт, 1987. 479 с.