Linearization of internal and external kinematics interaction of long-based freight wagons for passing small radius curves
Keywords:
long-base freight wagons, automatic coupler, assembly unit, wagon internal kinematics, adaptability resource, traffic safety, external impact, adaptive kingpinAbstract
The possibility of constructive adaptation of the assembly units of the kinematic chain of conjugated parts from the automatic coupler to the wheel-rail contact is considered on the basis of increasing the degree of freedom of the center-to-centre assembly for the train to pass curves of the railway track, including small radius and mountain pass sections. The closedness of the system of loads and the «train - superstructure of the track» influences are taken into account. Particular attention is paid to the applied use of the theory of simple and complex coupled systems with access to a certain design solution to ensure the normative level of traffic safety and positive implementation of the technical and technological resource of railway rolling stock. An approach to solving the problem of increasing the level of situational reliability, wear of an interacting wheel-rail pair based on the principles of an adaptive algorithm, as well as minimizing the probability of an emergency derailment of cars on curves of a small radius is achieved by including an element into a closed system that has an adaptability resource and the safe transfer of a destabilizing influences to another matrix. Since the linearization methods are limited, i.e., the equivalence of the original nonlinear system is preserved only for limited time scales of the system, or for certain processes during the movement of the train, then when switching from one operating mode to another, the adequacy of its linearized model should also be controlled. As an example, a variant of the eccentric articulation of the body with the bogie of a freight car is proposed. The result is valid not only for the studied freight cars, but also for the entire rolling stock using automatic coupling equipment of the SA-3 type. In the applied effective part, a variant of the functional «adaptive» expansion of the junction of the pivot beam of the car frame with the bogie is proposed in order to safely transfer the identified destabilizing effect to the adjacent matrix.
References
Восточный полигон получил зеленый свет // РБК : сайт // URL: https://www.rbc.ru/newspaper/2020/02/10/ 5e3d83999a794763c6d0d675 (Дата обращения: 01.10.2022).
Орлова А.М., Смирнов Н.В., Козлов П.В. Особенности динамического поведения сочлененных вагонов // Вагоны и вагонное хозяйство. 2010. № 4. С. 32–34.
Ermolenko I.Yu., Zheleznyak V.N., Martynenko L.V. Force loading of wagon during interaction of truck and bodywork in curves paths // AER-Advances in Engineering Research. 2018. Vol. 158. Рp. 130–134.
Методические указания по применению статических и кинематических габаритов подвижного состава на железных дорогах-членах организации сотрудничества железных дорог колеи 1435 и 1520 мм / Р 500/4 : утв. совещанием Комиссии ОСЖД по инфраструктуре и подвижному составу от 18.10.2016. Варшава, 2016. 86 с.
Смольянинов А.В., Якупов А.Р. Сравнительный анализ методик расчета устойчивости колесной пары от схода с рельсов // Транспорт Урала. 2017. № 1. С. 48–54.
Reducing the threat of in-transit derailments involving dangerous goods through effective placement along the train consist / M. Bagheri, F. Saccomanno, Sh. Chenouri et al. // Accident; Analysis & Prevention. 2011. Vol. 43 (3). Рp. 613–620.
Eom B-G., Lee H.S. Assessment of running safety of railway vehicles using multibody dynamics // International Journal of Precision Engineering and Manufacturing. 2010. Vol. 11 (2). Рp. 315–320.
Gilchrist A.O., Brickle B.V. A re-examination of the proneness to derailment of a railway wheelset // Journal of Mechanical Engineering Science. 1976. Vol. 18 (3). Рp. 131–141.
Continuous measurement of interaction forces between wheel and rail / Y.-S. Ham, D.-H. Lee, S.-J. Kwon et al // International Journal of Precision Engineering and Manufacturing. 2009. Vol. 10 (1). Рp. 35–39.
Theoretical cross-wind speed against rail vehicle derailment considering the cross-running wind of trains and the dynamic wheel-rail effects / M.S. Kim, G.Y. Kim, H.T. Kim et al. // Journal of Mechanical Science and Technology. 2016. Vol. 30 (8). Рp. 3487–3498.
Koo J. A new derailment coefficient considering dynamic and geometrical effects of a single wheel-set // Journal of Mechanical Science and Technology. 2014. Vol. 28 (9). Рp. 3483–3498.
Liu X., Saat M.R., Barkan Ch. P.L. Freight-train derailment rates for railroad safety and risk analysis // Accident Analysis & Prevention. 2017. Vol. 98. Рp. 1–9.
Синтез конструктивных решений на основе демпфирования в пределах внутренней кинематики грузовых вагонов / В.В. Тюньков, Н.П. Рычков, В.С. Бузунова и др. // Информационные технологии и математическое моделирование в управлении сложными системами. 2021. № 3 (11). С. 9–16.
Тюньков В.В., Бузунова В.С., Пашков А.Е. Технологический алгоритм в перспективном конструктивном развитии железнодорожных грузовых вагонов колеи 1520 мм // Молодая наука Сибири. 2020. № 4 (10). С. 18–26.
Козлов П.В. Влияние базы вагона-платформы сочлененного типа на запас устойчивости от схода колеса с рельса // Изв. Петербург. ун-та путей сообщ. № 4. С. 55–62.
Мямлин С.В. Моделирование динамики рельсовых экипажей. М. : Новая идеология, 2002. 240 с.
Кузович В.М. Динамическая нагруженность специализированных вагонов в криволинейных участках пути : дис. … канд. техн. наук. М., 2010. 211 с.
Маджидов Ф.А. Оценка параметра безопасности грузового вагона и управление эффективностью его использования с учетом изменения параметров эксплуатационной среды // Безопасность движения поездов : материалы XVII науч.-практ. конф. М., 2016. С. 96–98.