Optimization of the industrial enterprise infrastructure taking into account the statistical weight of objects

Authors

  • Aleksei V. Bal'chugov Angarsk State Technical University
  • Valerii E. Gozbenko Irkutsk State Transport University

Keywords:

optimization of industrial production, statistical weight of the object, the least squares method, optimization of the energy supply system, water disposal system, industrial safety

Abstract

This article analyzes the optimization of industrial production, carried out based on the least squares method, taking into account the statistical weight of each production facility. Using this method, the optimization of the power supply and wastewater disposal system, the ventilation system and the transport system of an industrial enterprise is considered. It is shown that when determining the statistical weight, it is advisable to use the most significant characteristics of objects. Thus, the optimization of the power supply system of an industrial enterprise, using water vapor as an energy carrier, made it possible to reduce friction pressure losses in the steam line by 18% and increase the technical and economic indicators of the process. This result is due to the fact that when calculating the statistical weight of the object (apparatus), the value of the water vapor consumption in this apparatus was reasonably used. The higher the steam consumption, the higher the statistical weight of the object. Calculations have shown that as a result of optimization of the drainage system of the enterprise, the hydraulic resistance of the drain due to friction is reduced by 10% and, as a result, its throughput increases. Optimization of the supply ventilation system based on the least squares method led to a 13% decrease in the hydraulic resistance of the air duct due to friction and to a decrease in power consumption for air supply, while the statistical weight of the object was set depending on the air flow rate in a particular room. The method of least squares, taking into account the statistical weight of objects, also made it possible to determine the optimal location of checkpoints for the personnel of an industrial enterprise in order to reduce the time spent by personnel in the danger zone. In determining the statistical weight of each facility, in this case, the number of maintenance personnel at the facility was used. The higher the number of personnel, the higher the statistical weight of the object (workshop). Thus, it is shown that the least squares method, taking into account the statistical weight of objects, is a universal method that allows you to optimize various aspects of industrial production.

References

Хилл П. Наука и искусство проектирования. М.: Мир, 1973, 263 с.

Gaochen Cui, Qing-Shan Jia, Xiaohong Guan, Qing Liuc. Data-driven computation of natural gas pipeline network hydraulics // Results in Control and Optimization. Volume 1, December 2020, 100004.

Eric Machorro, Jichun Li, Monika Neda, Pengtao Sun, HongtaoYang. Recent advances in computational mathematics and applications // Results in Applied Mathematics. Volume 8, November 2020, 100112.

Jensen H.A., Jerez D.J. A stochastic framework for hydraulic performance assessment of complex water distribution networks // Probabilistic Engineering Mechanics. Vol. 60, April 2020, 103029.

Yusupbekov N.R., Adilov F.T., Ivanyan A.I. Application of Cloud Technologies for Optimization of Complex Processes of Industrial Enterprises // 13th International Conference on Theory and Application of Fuzzy Systems and Soft Computing – ICAFS-2018. Pp. 852–858.

Streltsova E., Borodin A., Yakovenko I., Sokira T., Bizhanova K. Information management system of industrial enterprise in conditions of digitalization // International Journal of Civil Engineering and Technology (IJCIET). Vol. 10. Iss. 01, January 2019. Pp. 559–575.

Сквайрс Дж. Практическая физика. М., 1971, 247 с.

Коломиец Л.В., Поникарова Н.Ю. Метод наименьших квадратов. Самара: Изд-во Самарского университета, 2017. 32 c.

Ахназарова С.Л., Кафаров В.В. Оптимизация эксперимента в химической технологии. М.: Высшая школа, 1978. 319 с.

Лебедева О.А., Гозбенко В.Е., Пыхалов А.А. Мухопад Ю.Ф. Сравнительный анализ методов решения транспортных задач при оптимальном планировании перевозочного процесса // Современные технологии. Системный анализ. Моделирование. 2020. № 3(67). С. 134–139.

Полтавская Ю.О. Оптимизация транспортной сети на основе минимума общих затрат на доставку грузов // Вестник Ангарского государственного технического университета. 2019. № 13. С. 178–183.

Касаткин А.Г. Основные процессы и аппараты химической технологии. М.: Химия, 1973. 753 с.

Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Альянс, 2010, 575 с.

Струченков В.И. Дискретная оптимизация. Модели, методы, алгоритмы решения прикладных задач. Москва: СОЛОН-Пр., 2016. 192 с.

Павлов В.П. Карасев Г.Н. Дорожно-строительные машины. Системное проектирование, моделирование, оптимизация. Красноярск: Сиб. федер. ун-т, 2011. 240 c.

Островский Г.М., Волин Ю.М. Методы глобальной оптимизации сложных систем. Москва: ИД МИСиС, 2005. 105 с.

Бабенышев С.В., Матеров Е.Н. Методы оптимизации. Железногорск: Сибирская пожарно-спасательная академия ГПС МЧС России, 2019. 134 с.

Шиплюк. А.Н. Методы оптимизации в задачах аэрогазодинамики. Новосибирск: Изд-во НГТУ, 2014. 107 с.

Золотарев А.А. Методы оптимизации распределительных процессов / А.А. Золотарев. Москва: Инфра-Инженерия, 2014. 160 с.

Авдюнин Е.Г. Моделирование и оптимизация промышленных теплоэнергетических установок. Москва; Вологда: Инфра-Инженерия, 2019.

Published

2021-04-29

How to Cite

Бальчугов, А. В., & Гозбенко, В. Е. (2021). Optimization of the industrial enterprise infrastructure taking into account the statistical weight of objects. Modern Technologies. System Analysis. Modeling, (1(69), 67-76. Retrieved from https://ojs.irgups.ru/index.php/stsam/article/view/107

Issue

Section

Machine construction and theoretical engineering

Most read articles by the same author(s)