The use of simulation modeling in the development of a device for monitoring the state of contact network support when it is ungrounded
Keywords:
statistics, failures of technical equipment, automation and telemechanics devices, relay protection, contact network, high-voltage insulation, contact network support, registration and indication of emergency modes, current sensor, optical element, current-limiting resistorAbstract
An analysis of failure statistics of technical equipment for the period 2018–2023 was carried out, within the framework of the registration system for technical equipment failures of traction power supply devices of the Trans-Baikal Railway. Particular attention is paid to the most widespread failures of technical equipment associated with the ungrounding of the contact network support of the traction power supply system, due to the damage of high-voltage insulators of the contact network, which negatively affects the efficiency and selectivity of the operation of relay protection systems and emergency automatics of the traction power supply system, railway systems and automation and telemechanics devices, floor-mounted centralization devices, alarms and automatic blocking. The design of a device for monitoring the state of a contact network support when it is ungrounded has been developed, and an implementation option for this device has been proposed to improve the reliability and efficiency of relay protection and floor-mounted devices of railway automation and telemechanics. A reduction in material costs associated with determining the location of the ungrounded support is achieved due to the minimal material costs for creating this device. To study the operation of the above-mentioned device, licensed software of the Multisim simulation system, version 10.0, was used. The obtained test result shows the full functionality of the model of the device for monitoring the state of the protective grounding of the contact network support when it is ungrounded. The widespread use of the device under development will allow integration into the system of diagnostics and control of the state of the supports of the AC contact network, as a primary element controlling, among other things, the improvement of the state of electrical safety issues of operational and technical personnel and the third parties. The proposed optical variant of the output signal will help to eliminate the issue of galvanic high–voltage isolation, the absence of the influence of the support to the control point distance, in the form of the power supply distance or traction substation.
References
Шаманов В.И. Проблемы электромагнитной совместимости рельсовых цепей с тяговой сетью // Автоматика на транспорте. 2019. Т. 5. № 2. С. 160–185.
Об утверждении документов ОАО «РЖД» по вопросам учета отказов в работе технических средств и технологических нарушений на инфраструктуре ОАО «РЖД» : распоряжение ОАО «РЖД» № 1915/р от 06.09.2021 г. (ред. 07.11.2023). Доступ из справ.-правовой системы АСПИЖТ в локал. сети.
Mohmmad A. Uplink Radio Resource Management for QoS Provisioning in Long Term Evolution (with Emphasis on Admis-sion Control and Handover) : ph.D.’s thesis. Aalborg, 2009. 169 p.
Сюй Ц. Принципы моделирования оперативной работы энергодиспетчера // Междунар. журн. гуманитарных и естественных наук. 2024. № 5-4 (92). С. 91–99.
Дынькин Б.Е. Защита тяговых сетей переменного тока при разземлении опор контактной сети. Хабаровск : ДВГУПС, 1999. 165 с.
Титков В.В., Халилов Ф.Х. Перенапряжения и молниезащита. СПб. : Лань, 2016. 224 с.
Андреев О.В., Вакулин А.А., Киселева К.В. Материаловедение. Тюмень : ТГУ, 2013. 630 с.
Халилов Ф.Х., Егоров В.В., Смирнов А.А. Техника высоких напряжений и электротехнические материалы : в устрой-ствах железнодорожного транспорта. СПб. : Талекс, 2007. 539 с.
Тареев Б.М. Физика диэлектрических материалов. М. : Энергоиздат, 1982. 320 с.
У Восточного полигона сдвигаются точки // Коммерсантъ : сайт. URL : https://www.kommersant.ru/doc/5571923 (Дата обращения 03.04.2024).
О совершенствовании системы содержания объектов энергетического комплекса : распоряжение ОАО «РЖД» № 1812/р от 18.08.2021 г. (ред. 28.02.2023). Доступ из справ.-правовой системы АСПИЖТ в локал. сети.
Кузовкин В.А., Филатов В.В. Схемотехническое моделирование электрических устройств в Multisim. Старый Оскол : ТНТ, 2022. 336 с.
Aharoni A. Introduction to the Theory of Ferromagnetism. Oxford : Clarendon Press, 1996. 326 p
Brown W.F. Jr. Magnetostatic Principles in Ferromagnetism. Amsterdam : North-Holland Publishing Company, 1962. 202 p..
Гуляев В.Г. Электротехника и электроника. Нижний Новгород : ННГАСУ, 2019. 124 с.
Марочник сталей и сплавов / под общей ред. А.С. Зубченко. М. : Машиностроение, 2003. 784 с.
Нейлоновые кабельные стяжки NORMA // NORMARus : сайт. URL : https://normarus.ru/kabelnye-stjazhki/ (Дата обращения 05.04.2024).
Московский энергомеханический завод : сайт / МЭЗ подразделение ДКРЭ ОАО «РЖД». URL : https://mez.ru/about/ (Да-та обращения 05.04.2024).
Paul C.R. Introduction to electromagnetic compatibility. New York : Wiley-Interscience, 1992. 765 p.
Wireless Body Area Networks: A Survey / S. Movassaghi, M. Abolhasan, J. Lipman et al. // IEEE Communications Surveys and Tutorials. 2014. Vol. 16. Iss. 3. P. 1658–1686. DOI 10.1109/SURV.2013.121313.00064.