Application of cable lines in external power supply systems of DC railways
Keywords:
traction power supply, direct current, cable lines, cross-linked polyethylene, modeling, power qualityAbstract
To connect railway traction substations to high-voltage networks of electrical power systems, overhead power lines are used. This approach has a number of disadvantages, which include the following: significant width of the security zone; the possibility of damage due to strong winds and the formation of ice and frost deposits; risk of injury to people and animals from the effects of step voltages due to broken wires. These negative effects can be eliminated by using 110 kV cable lines with molecular cross-linked polyethylene insulation to connect traction substations. The purpose of the research presented in the article was to develop digital models for determining the modes of DC traction power supply systems with power supply to traction substations via cable power lines. The results obtained allowed us to draw the following conclusions: when using cables, the minimum three-minute voltages increase by 2,0–3,5%; active power losses in the head power transmission line are reduced by 8–14 %. DC traction substations do not create noticeable levels of asymmetry in adjacent networks. However, any asymmetry of the three-phase system has a negative impact on electrical consumers, especially on the widespread asynchronous electric motors. The use of XLPE cables allows to reduce the asymmetry coefficients by 11–22 times. In the presence of overhead power lines, the levels of harmonic distortion on the 110 kV buses of TP 2 and TP 3 exceed the normally permissible values. Replacing an overhead line with a cable makes it possible to reduce the total coefficients characterizing the levels of harmonic distortion by approximately 60 %. The coefficients of individual harmonics are reduced by 37–100 %. The developed digital models can be used in the design and operation of traction power supply systems. The method for determining modes is universal and can be used to calculate the modes of external power supply systems of any configuration and traction networks of various designs.
References
Математическое моделирование электрического влияния тяговой сети постоянного тока напряжением 24 кВ на смежные линии / А.Н. Марикин, Е.С. Мушков, М.А. Иванов и др. // Электротехника. 2019. № 10. С. 23–26.
Лесников Д.В. Моделирование тяговой сети постоянного тока с учетом проводимости земли // Транспорт Урала. 2020. № 2 (65). С. 75–79.
Гаврилин И.С., Ершов С.В. Особенности моделирования и расчета тяговых сетей постоянного тока // Изв. Тульс. гос. ун-та. Техн. науки. 2012. № 12-3. С. 234–242.
Черемисин В.Т., Незевак В.Л., Шатохин А.П. Повышение энергетической эффективности системы тягового электро-снабжения в условиях работы постов секционирования с накопителями электрической энергии // Изв. Томск. политехн. ун-та. Инжиниринг георесурсов. 2015. Т. 326. № 10. С. 54–64.
Математическое моделирование магнитного влияния контактной сети постоянного тока напряжением 3 и 24 кВ на смежные коммуникации связи / Е.С. Мушков, А.Н. Марикин, М.А. Иванов и др. // Транспорт Урала. 2021. № 2 (69). С. 97–100.
Luo J. Fault Analysis and Simulation of Metro DC Traction Power Supply System under Multiple Working Conditions // IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). Dalian, 2022. P. 92–95. DOI 10.1109/AEECA55500.2022.9918840.
Research on Short-Circuit Characteristics of Subway DC Traction Power Supply System / M. Xia, Y. Zhou, Y. Huang et al. // IECON : the 46th Annual Conference of the IEEE Industrial Electronics Society. Singapore, 2020. P. 3456–3460. DOI 10.1109/IECON43393.2020.9254651.
Lu C., Li X., Chen S. Composite Load Equivalent Modeling of Traction Power Supply System // 3rd Asia Energy and Electrical Engineering Symposium (AEEES). Chengdu, 2021. P. 32–40. DOI 10.1109/AEEES51875.2021.9403048.
AC/DC Converter for DC Traction Power Supply System with High-Speed Train Operation / Y. Sokol, V. Sychenko, Y. Voi-tovych et al. // 2019 IEEE 6th International Conference on Energy Smart Systems (ESS). Kyiv, 2019. P. 116–121. DOI 10.1109/ESS.2019.8764207.
Simulation Study on Dynamic Distribution of Ground Fault Current in Low and Medium Speed Magnetic Levitation Traction Power Supply System / N. Yan, J. Wang, A. Ping et al. // IEEE International Conference on High Voltage Engineering and Applications (ICHVE). Chongqing, 2022. DOI 10.1109/ICHVE53725.2022.9961483.
Reliability and Life Evaluation of a DC Traction Power Supply System Considering Load Characteristics / Y. Chen, Z. Tian, C. Roberts et al. // IEEE Transactions on Transportation Electrification. 2021. Vol. 7. Iss. 3. P. 958–968.
Modelling and Simulation of New Traction Power Supply System in Electrified Railway / M. Chen, T. Wen, W. Jiang et al. // IEEE 18th International Conference on Intelligent Transportation Systems. Las Palmas, 2015. P. 1345–1350. DOI 10.1109/ITSC.2015.221.
Research on the influence of urban metro traction power supply system on power grid harmonics / H. Aoyang, Y. Litao, W. Li et al. // First International Conference on Electronics Instrumentation & Information Systems (EIIS). Harbin, 2017. DOI 10.1109/EIIS.2017.8298567.
An Improvement Method of Feeder Protection in DC Traction Power Supply System / W. Wei, C. Yueliang, W. Chuanxiu et al. // IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Chengdu, 2019. P. 1588–1594. DOI 10.1109/IAEAC47372.2019.8997569.
Kang D., Xu J., He X. Structure Scheme and Control Strategy Design of Advanced Traction Power Supply System // IEEE 17th Conference on Industrial Electronics and Applications (ICIEA). Chengdu, 2022. P. 69–74. DOI 10.1109/ICIEA54703.2022.10006325.
Song H., Zeng L., He X. Power Quality Comprehensive Compensation Strategy for Retrofit Structure of Advanced Traction Power Supply System // IECON : 49th Annual Conference of the IEEE Industrial Electronics Society. Singapore, 2023. DOI 10.1109/IECON51785.2023.10312296.
Simiyu P., Davidson I.E. Modeling and Simulation of MVDC Traction Power System for High-Speed Rail Transportation // IEEE PES/IAS PowerAfrica. Nairobi, 2021. DOI 10.1109/PowerAfrica52236.2021.9543274.
Study on new traction power supply system for power quality comprehensive compensation in electrified railway / M. Chen, J. Luo, W. Jiang et al. // TENCON : IEEE Region 10 Conference. Macao, 2015. DOI 10.1109/TENCON.2015.7372869.
Probabilistic power flow calculation method for subway traction load based on quasi-Monte Carlo and semi-invariant method / J. Chang, Ch. Da, H. Guo et al. // 7th International Forum on Electrical Engineering and Automation (IFEEA). Hefei, 2020. P. 586–591. DOI 10.1109/IFEEA51475.2020.00126.
DC Traction System Hardware Emulator for Rail Potential Distribution in DCAT Traction Power Supply System / L. Wang, X. Yang, J. Xu et al. // IEEE International Power Electronics and Application Conference and Exposition (PEAC). Shenzhen, 2018. DOI 10.1109/PEAC.2018.8590497.
Modeling and Simulation of a New Hybrid Transformer for Metro Traction Power Supply System / C. Wang, Y. Huang, F. Hou et al. // IEEE 5th International Electrical and Energy Conference (CIEEC). Nangjing, 2022. P. 3350–3355. DOI 10.1109/CIEEC54735.2022.9846385.
Закарюкин В.П., Крюков А.В. Сложнонесимметричные режимы электрических систем. Иркутск : ИрГУПС, 2005. 273 с.
Закарюкин В.П., Крюков А.В. Моделирование систем тягового электроснабжения постоянного тока на основе фазных координат. М. : Директ-Медиа, 2023. 156 с.
Моделирование режимов электрических сетей, питающих тяговые подстанции постоянного тока / А.В. Крюков, К.В. Суслов, А.В. Черепанов и др. // Энергетик. 2024. № 2. С. 9–13.
Крюков А.В., Суслов К.В., Нгуен К.Х. Моделирование режимов систем тягового электроснабжения, оснащенных установками инверторной генерации // Интеллектуальная электротехника. 2024. № 1 (25). С. 70–85.
Уменьшение гармонических искажений в электрических сетях, питающих тяговые подстанции железных дорог постоянного тока / А.В. Крюков, К.В. Суслов, А.В. Черепанов и др. // Промышленная энергетика. 2024. № 4. С. 51–57.