Assessing cargo demand through matrix recovery correspondence using different data

Authors

  • Ol'ga Anatol'evna Lebedeva Angarsk State Technical University
  • Valeriy Erofeevich Gozbenko Angarsk State Technical University, Irkutsk State Transport University

Keywords:

correspondence matrix, traffic flow, modeling, freight demand

Abstract

An important scientific direction in the development of the organization of the freight transportation process is the study of methods for evaluating correspondence matrices using various data, which corresponds to the strategy of socio-economic development of the Irkutsk region for the period up to 2036. Automobile urban freight transport is an important part of the transport system of the Russian Federation, whose effective functioning creates conditions for the development of the economy, ensuring the satisfaction of transport needs. Under these conditions, increasing the requirements for the quality of transport services and ensuring the safety and sustainability of the transportation system functioning are a present day challenge facing road transport and requiring a clear definition of priorities, goals and objectives for the development of road transport, as a sub-brunch of the country's transport complex. The relevance of the scientific article lies in the fact that the problem of assessing freight demand by evaluating correspondence matrices is complex. Since the 1970s, several methods have been developed to evaluate correspondence matrices using all kinds of data. It has been shown that some techniques can be applied only under certain limited conditions and may result in information losses. To solve this problem, it is proposed to use elastic rather than fixed links. Another option is to use the stochastic estimation method (binary calibration) due to the lack of coefficients depending on time and space, this method can be used to predict the activity of freight transport in urban agglomerations in the form of a single system to guarantee the compliance with the quality standards of its service under high operational efficiency transport system. Comparative analysis of various matrix estimation methods is the purpose of this article.

Author Biographies

Ol'ga Anatol'evna Lebedeva, Angarsk State Technical University

Ph.D. in Engineering Science, Associate Professor, Associate Professor of Department «Management of Automobile Transport»

Valeriy Erofeevich Gozbenko, Angarsk State Technical University, Irkutsk State Transport University

Doctor of Engineering Science, Professor, the Full Professor of the Department «Management of automobile transport» (Angarsk State Technical University), the Full Professor of the Department «Mathematics» (Irkutsk State Transport University)

References

Лебедева О.А., Антонов Д.В. Моделирование грузовых матриц корреспонденций гравитационным и энтропийным методами // Вестник Иркутского государственного технического университета. 2015. № 5 (100). С. 118-122.

Лебедева О.А., Крипак М.Н. Моделирование грузовых перевозок в транспортной сети // Вестник Ангарского государственного технического университета. 2016. № 10. С. 182-184.

Лебедева О.А., Крипак М.Н. Развитие городских грузовых систем с учетом концепции городского планирования / Сборник научных трудов Ангарского государственного технического университета. 2016. Т. 1. № 1. С. 244-247.

Полтавская Ю.О. Повышение эффективности цепи поставок с учетом оптимального местоположения распределительного центра // Вестник Ангарского государственного технического университета. 2021. № 15. С. 164-167.

Полтавская Ю.О. Оптимизация транспортной сети на основе минимума общих затрат на доставку грузов // Вестник Ангарского государственного технического университета. 2019. № 13. С. 178-183.

Шаров М.И., Михайлов А.Ю., Дученкова А.В. Пример оценки транспортной доступности с использованием программного продукта PTV «VISUM» // Известия вузов. Инвестиции. Строительство. Недвижимость. 2013. № 1(4). С. 133-138.

Лебедева О.А. Анализ проектирования транспортных зон на основе моделирования сети // Вестник Ангарского государственного технического университета. 2019. № 13. С. 172-177.

Гозбенко В.Е., Крипак М.Н., Иванков А.Н. Совершенствование транспортно-экспедиционного обслуживания грузовладельцев. Иркутск: ИрГУПС, 2011. 176 с.

Гозбенко В.Е., Иванков А.Н., Колесник М.Н., Пашкова А.С. Методы прогнозирования и оптимизации транспортной сети с учетом мощности пассажиро и грузопотоков // Депонированная рукопись № 330-В2008 17.04.2008.

Полтавская Ю.О. Основные факторы, влияющие на выбор способа транспортировки // Современные технологии и научно-технический прогресс. 2021. № 8. С. 191-192.

Lebedeva, O., Kripak, M., Gozbenko, V. Increasing effectiveness of the transportation network through by using the automation of a Voronoi diagram. Transportation Research Procedia. 2018. Vol. 36. 427–433.

R. Hamerslag and FI. C. Huisman. Binaire Calibratie. De Scbauing Van Coefficienten in een Verkeersmodel Met Ge brickmaking van Verschillende Soorten Waarnemingen. Verkeerskunde, No. 4, 1978, pp. 166-168.

J. G. Smit. Het Schatten van Herkomst-bestemmings Matrices: de Maximum Likelihood Versus de Minimum Vari- ance Methode. In Proceedings Colloquium Vervoersplano logisch Speurwerk, 1981, pp. 737-741.

H.J. Van Zuylen. The Information Minimising Method: Its Validity and Applicability to Transportation Planning. In New Developments in Modelling Travel Demand and Urban Systems (G. R. M. Jansen et al., eds.) Saxon House, 1979, pp. 344-371.

M. G. H. Bell. The Estimation of Junction Turning Volumes from Traffic Counts: The Role of Prior Information. Traffic Engineering and Control, Vol. 25, No. 5, 1984, pp. 279- 283.

L. G. Willumsen. Estimating Time-dependent Trip Matrices from Traffic Counts. Proceedings of 9th International Symposil. un on Transportation and Traffic Theory, 1984, pp. 377- 411.

A. G. Wilson. The Use of Entropy Maximising Models in the Theory of Trip Distribution, Modal Split and Route Split. Joumal of Transport Economics and Policy, Vol. 2, No. 1, 1969, pp. 108-126.

S.Nguyen. 0n the Estimation of an 0-D Trip Matrix by Equilibrium Methods Using Pseudo-delay Funclions. CRT publ. 81. University de Montreal, Centre de Recherche sur Les Transports Montreal, Quebec Canada, 1978.

R. Hamerslag. Het Schatten van Herkomst- en Bestemmings matcices m.b.v. Schijnbaar Tegenstrijctige Waamemiogen. Proceedings Colloquium Vervoersp/ano/ogisch Spe11nverk 1980, pp. 711-714.

A. G. Wilson. A Statistical Theory of Spatial Distribution Models. Transportation Research, 1967, pp. 253-269.

M. J. Maher. Bias in the Estimation of O-D Hows from Link Counts. Paper presented at UTSO conference, Sheffield, United Kingdom, 1987.

M. F. A. M. Van Maarseveen and C. J. Ruygrok. Het Oebruik van Route-informatie Voor het Opstellen van HB-matrices. Proceedings Colloquium Vervoersplanologisch Speurwerk, 1982, pp. 399-420.

M. F. A. M. Van Maarseveen et al. Estimating 0-D Tables Using Empirical Route Choice Information with Application to Bicycle Traffic. Paper presented at 64th Annual Meeting, TRB, January 1985.

T. Van Vuren. Het Schatten van een Herkomst- en Bestemmingstabel: Een Overzicht. Thesis. Delft University of Technology, Delft, Netherlands, 1985.

E. Heere and M. C. Huisman. Toepassing van de binaire Calibratiemethode in Zaanstad. Verkeerskunde, 1978, pp. 239-242.

Kuzmin O. V., Khomenko A. P., Artyunin A. I. Development of special mathematical software using combinatorial numbers and lattice structure analysis. Advances and Applications in Discrete Mathematics, 2018, 19(3), 229-242.

Kuzmin O. V., Khomenko A. P., Artyunin A. I. Discrete model of static loads distribution management on lattice structure. Advances and Applications in Discrete Mathematics, 2018, 19(3), 183-193.

M. C. Ellis and H. Van Ammers. Forecasting Using Cordon Surveys in the Egyptian National Transportation Study. Pro• ceedings of 9th Summer Annual Meeting, PTRC, Warwick, England, 1981.

Published

2022-03-31

How to Cite

Лебедева, О. А., & Гозбенко, В. Е. (2022). Assessing cargo demand through matrix recovery correspondence using different data. Modern Technologies. System Analysis. Modeling, (1(73), 86-94. Retrieved from https://ojs.irgups.ru/index.php/stsam/article/view/532

Most read articles by the same author(s)